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CHAPTER ONE
Trends, Tricks, and Try-ons
in CFD/CHT
Brian Spalding
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Abstract
Computational fluid dynamics and its counterpart computational heat transfer are sub-
jects that inspire alarm in precomputer-trained professors and awe in young would-be
researchers. One aim of this chapter is to diminish these reactions by clarifying both the
laudable and the debatable natures of the subjects. A second aim is to make clear, to
those who are not overanxious to follow fashion, that there remains much scope for
valuable innovations.

The chapter reviews items selected from approximately half a century of three-
steps-forward-two-steps-back actions, and it contains such adumbrations of detail
and expressions of personal opinion as its author judges to be conducive to its aim.
1

http://dx.doi.org/10.1016/B978-0-12-407819-2.00001-3


2 Brian Spalding

Author's personal copy
1. INTRODUCTION

Science, whether pure or applied, is no less subject to fashion than
other human activities. Following one’s predecessors is usually safe and

sometimes wise; but it is best done consciously, with the possibility in mind

that not following may sometimes be better.

The “trends” referred to in the title of the chapter can be fairly called

“fashions.” Examples will be discussed in respect to computational grids,

equation-solving methods, and turbulence models.

Reality is and theorymay be, but it is the latter that scientists prefer to deal

with. Just as the theater “magician” persuades his audience to believe in what

can surely not be truth, so the inventive scientist seeks to persuade himself,

and indeed others too, that his idealizations, though not strictly true, will be

useful. Lest they be overprotected from criticisms, such artifacts are here

called “tricks.” Radiation models and techniques for handling awkwardly

shaped objects are among the contributions of the computational fluid

dynamics/computational heat transfer (CFD/CHT) “tricksters.”

Before a novel approach becomes an accepted trick and is honored with

the grander title of “model,” it appears as a “try-on,” by which is here meant

that its proposer “wonders if” some new formulation might possibly fit real-

ity better than those in common use. Examples of such musings, in which

the author will invite his readers to participate, concern a “mixing length

transport” turbulence model, the “population model” approach to turbulent

swirling flows, and the “partially parabolic” method.

During the writing of this chapter, the author has been conscious of the

serious gaps in his own current knowledge, by exposing which he hopes that

some readers will be moved to enlighten him. Should his ignorance prove to

be widely shared, however, exposing it may hopefully guide researchers

toward avenues that may be profitable to explore.

2. TRENDS

2.1. Computational grid trends

2.1.1 Early choices: Cartesian, cylindrical-polar, and body-fitted
The earliest applications of numerical solution methods to the differential

equations of fluid mechanics and heat transfer used grids of Cartesian or

cylindrical-polar configuration. Formulating the so-called finite-difference

(later “finite-volume”) equations linking dependent variables at grid nodes
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was then rather easy because lines joining such nodes intersected at right

angles. Typically, each node was connected with only six neighbors, two

in each of the three coordinate directions.

Soon, however, the need to consider flows around curved bodies such as

airfoils caused “body-fitted coordinate” grids to find favor, even though at least

12 neighbors had to be considered for each node; and still, the equations

could be formulated plausibly in more than one way.

2.1.2 Arbitrary polygonal cells
Specialists in the analysis of stresses in solids had meanwhile been taking a

different route. Their “finite volumes,” which they called “finite

elements,” were typically tetrahedrons with arbitrary angles between the

normal and adjacent sides. This choice allowed their grids to be fitted to

bodies of rather awkward shapes, which was probably the reason why fluid

dynamicists also began to adopt the idea.

The equations between the variables at the grid nodes now became even

more complex and difficult to derive with certainty; but, once done and

embodied in computer coding, the difficulties disappeared from view.

Reluctance to revisit them discouraged making rigorous tests as to the rel-

ative accuracies of the alternative discretization possibilities. (Question #1 to

readers: where, if anywhere, have the results of truly comprehensive tests

been published?)

Grids of this kind were “unstructured,” meaning that geometrically

nearby nodes did not necessarily have their values stored in adjacent loca-

tions in computer memory. This complicated the task of solving the equa-

tions; and for this reason, some computer-code custodians preferred not to

follow the fashion, adopting instead a different way of solving the awkward-

body-shape problem. They used the “cut-cell” technique.

2.1.3 PARSOL: for “partly solid” cells
In one version of this technique, known as PARSOL [58], the grid was every-

where of the structured Cartesian or cylindrical-polar configuration except

where cell edges were intersected by the surfaces of solid bodies. Cells having

such intersected edges were then split into two parts, one within the body and

one outside it. Moreover, this was performed automatically by the computer

code; so the bothersome-to-users task of creating an unstructured grid ceased

to exist.

Figure 1.1 shows an early example of the application of this technique to

the flow of air through a louvered wall. Of course, the Cartesian grid had to



Figure 1.1 PARSOL applied to a louver.
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be fine enough so that no cell had two nonsolid parts in it; but it could not be

so fine as properly to represent the boundary layers on the louver surfaces.
2.1.4 Space-averaged rather than detailed-geometry CFD
Early in the present author’s career, he had to apply CFD to practical prob-

lems in which the detailed geometry of the equipment in question was too

intricate to be fitted by any grid that had a cell number small enough for the

then-available computers to handle. Specifically, it was necessary to be able,

at least to some extent, to simulate the flow of mixtures of steam and water

through spaces between the hot water-containing tubes within the shells of

nuclear steam generators [1].

Both body-fitted and cut-cell grids were out of the question, because the

dimensions of the largest possible grids greatly exceeded tube diameters.

Therefore, the heat transfer and frictional interactions between the fluid

mixture and the tube bundle were represented via “space averaging.” This

entailed postulating that coefficients having per-unit-volume dimensions

would be able sufficiently to represent the interactions quantitatively; and

their local magnitudes were either guessed or computed from believed-

to-be plausible formulas. From them were computed the magnitudes per

unit shell volume of the heat sinks within the tube-side water and the heat

sources in the shell-side mixture.
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This was one of the first of the “tricks” alluded to in the title of this chap-

ter. It was accepted as the best that could be done; and it helped steam-

generator designers to reduce the flow-induced damage that was then lim-

iting the life spans of their equipment.
2.1.5 IBM: the immersed boundary method
Tube bundles were treated by space-averaged CFD as being “immersed” in

the fluids within and outside them. It is interesting therefore that what is

called the “immersed boundary method” is becoming popular [2] as a means

of avoiding the unstructured grid-creation difficulty. The essential idea is

similar to that of space-averaged CFD. It adds such sources or sinks to

the finite-volume momentum equations as will reduce to zero the velocities

at locations within the solid and such as will also ensure that the velocity com-

ponents at points just outside the solid produce vectors parallel to its surface.

As with PARSOL, the grid must be fine enough, when the solid body is

thin, for the grid nodes to represent its shape adequately; and the magnitudes

of the sources can be computed with various degrees of sophistication.

However, the simplicity of the method is such that former enthusiasts for

the polygonal cell shape policy appear to be transferring their affections.

Although only now becoming fashionable, its acknowledged roots

are old [59]. Figure 1.2 shows a 1995 application to the simulation of air flow

within a football stadium [3].
Figure 1.2 Early example of immersed boundary technique.



Figure 1.3 Divided Cartesian grid.
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2.1.6 Divided Cartesian grids
It must be admitted that the polygonal cell shape policy does allow the grid

to be fine only close to solid surfaces while remaining coarser elsewhere. For

this reason, some CFD-code vendors have adopted a compromise solution

of the kind illustrated in Fig. 1.3, in which the larger still-Cartesian cells are

successively halved in one or all directions, with the smallest cells being clos-

est to the solid surfaces where they are most needed.

To judge from recent CFD publications [60], such grids are becoming

more popular than arbitrary polygonal ones, no doubt because the finite-

volume equations are easier to formulate.
2.1.7 The future
Body-fitted, cut-cell, immersed boundary, and subdivided grids all have

their distinct merits; moreover, they are not incompatible with one another.

The present author is therefore working on creating grids that combine all

features, seeing in such a combination the best that can be envisaged at the

present time. The once ubiquitous arbitrary polygonal grid, however, seems

unlikely to retain its popularity.

Some success has been obtained with what has been called the X-cell

grid, a simple version of which is shown in Fig. 1.4. An interesting feature
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Figure 1.4 The X-cell grid.

Figure 1.5 Showing the superior numerical-diffusion suppression of X-cells.
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of this grid type is that the number of control volumes provided for scalar

variables such as temperature is four times the numbers of control volumes

for mass and momentum conservation. This is not unreasonable because

distributions of pressure within fluids, which are deduced from the latter

equations, are commonly much more smooth than those of temperature.

More important however than the increase in number is their difference

in shape; whereas rectangular cells are free from numerical diffusion only

when the fluid flows vertically or horizontally, X-cell grids are free from it

for diagonally directed flow. This is illustrated in the three contour diagrams

of Fig. 1.5. All of these represent the predicted temperature distribution

in a two-dimensional (2D) equal-sided domain, into which colder (blue)

fluid flows from the left and hotter (red) fluid flows, with equal absolute

velocity, from below. The grid is uniform with 40 rows and 40 columns

in diagrams (a) and (b), but it has 80 rows and 80 columns in diagram (c).
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The cells of (a) are divided in the X-cell manner; and, as a consequence,

the temperature-discontinuity boundary between the two streams remains

perfectly sharp. Those of (b) and (c) are not so divided; therefore, the numer-

ical diffusion associated with the conventional upwind differencing causes

the interface to become blurred. The blurring is less for case (c), which

has the same number of control volumes as case (a); but it is still severe.

It is the triangular shape of the extra control volumes of X-cell that makes

the difference, not their number.

Figure 1.5 admittedly shows X-cell at its spectacularly successful best,

because the flow direction is aligned with one of the diagonals. But

X-cell is better than the conventional grid of the same number of control

volumes whatever the flow direction.

Some work has been done on a more advanced version of X-cell in

which the velocity components are stored at the same locations as the scalar

variables. This gives the grid a so-called collocated character, which has the

advantage that the convective contributions to the internode coefficients are

the same for both all dependent variables. But there is another advantage too:

The pressures are not stored at the same location; therefore, the “checker-

board problem” associated with the usual collocated-grid arrangement does

not arise!

Attractive though it is, lack of publicity has left this possibility scarcely

explored. All that can be reported is that the present author with S. Zhubrin

[Ref. 57], several years ago, compared the results of such X-cell-based cal-

culations with results obtained with a body-fitted coordinate grid having an

equal number of cells. The flow was the 2D steady laminar flow around and

in the wake of a cylinder positioned at right angles to the stream.

A comparison of the numerical predictions of the nondimensionalized

length of the downstream recirculation zone with the experimental value

is conveyed in Table 1.1.

While insufficient in number to be conclusive, these comparisons suggest

that X-cell is greatly superior when the grid is coarse.
Table 1.1 Comparison of Numerical Predictions and Experimental Data
for Wake Length
NX*NY Length 1; X-cell Length 2; BFC Length 3; exprm

27*13 2.3 1.15 2.75

36*13 2.6 1.25 2.75

60*30 2.8 2.8 2.75



Figure 1.6 X-cell subdivision combined with Cartesian subdivision.
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The purpose of this chapter is more to point out possibilities than to enu-

merate certainties. It is therefore appropriate to remark that the X-cell idea is

applicable to unstructured Cartesian grids and to structured ones. Figure 1.6

explains clearly enough.

Of course, there is no need to use X-cell subdivision everywhere. For

reasons of economy, it would make sense to use it only, so as to preserve

realism, where numerical diffusion would otherwise outweigh physical

diffusion.

The subject of computational grids will be returned to under “Tricks” in

Section 3.3.
2.2. Linear equation solver trends
2.2.1 Point-by-point (i.e., PBP) relaxation methods
Although the presence of convection terms in the finite-volume equations

of CFD renders their totality nonlinear, it is common practice to proceed by

way of solving a series of equations for a single dependent variable. These equa-

tions are treated as being temporarily linear, by updating their coefficients in

what are called “outer iterations,” only after all such variables have been

attended to.

Parenthetically, it may be remarked that whether this is wise is still doub-

ted by those who remember the SIVA (i.e., simultaneous variable adjust-

ment) method of the early 1970s [4]. It was doing well before it was

swept aside by the incursion of SIMPLE (i.e., semi-implicit method for

pressure-linked equations) [5]; and surely, SIVA could have been further

improved. But decade-long eclipses like this are frequent consequences of

science’s fashion-following tendency.

The form of the linear equations to be solved is
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aiixiþ
X

j
aijxj ¼ bI

where xi is the value of a dependent variable at node i, xj is its value at the

neighboring nodes j, aii, and aij are constant coefficients, and bI is a source term.

These equations may easily be solved, point-by-point, by updating each

xi in turn, while the xj’s on the right-hand side are treated temporarily as

known values, until, that is, they are updated when their turn comes round.

Then, as soon as the last value has been updated, a new cycle of updates can

be undertaken, so as to determine what adjustments of the first-made

updates must be made to accord with the later-made ones.

The updating process just described is often (but not always) called

“relaxation.” That term will be used in the succeeding text.

The two most common PBP relaxation methods are

• Gauss–Seidel that uses the updated xI 0’s as soon as they are available and

• Jacobi that delays the updating until each node has been visited once.

The former converges toward the solution more rapidly; but both require

many repeated relaxations; and their number increases in proportion to

the square or higher power of the number of nodes in the grid.

Therefore, if used in practical calculations, PBP methods must be

improved by the application of convergence-accelerating devices, of which

more will be said later.
2.2.2 General remarks about linear-equation solvers
There are many highly impressive textbooks [6, 7] devoted to the available

methods of solving linear algebraic equations. Their authors know vastly

more about the subject than does the present one, whose experience never-

theless has highlighted factors that the textbooks fail to emphasize, as follows:

• The merits of a solver are to be measured primarily by the brevity of the

computer time in which it needs to produce a set of xi values that differ by

less than a user-assigned tolerance from those that are ultimately found to

satisfy all the equations exactly.

• A counterbalancing demerit may be (depending on the resources avail-

able) the magnitude of the computer memory that it requires.

• The relative merits of one solver to another depend enormously on the

ratios of aij
’ s to aii and to one another.

• They depend very greatly also on the distribution in space of the values of

xInitial_guess�xexact_solution:



11Trends, Tricks, and Try-ons in CFD/CHT

Author's personal copy
It would be unnecessary to make such statements were the literature not

full of confident unqualified assertions regarding the superiority of one

method to another. Nor had the author of one highly regarded 500-page

textbook provided more than a mere five rather simple cases as tests for

the comparison of the methods so learnedly described.

Moreover, the merits of methods are frequently assessed by reference to

the magnitudes of the remaining residuals, that is, the magnitudes of eI,

defined by

eI ¼ aiixiþ
X

j
aijxj� bI

rather than in terms of the physically meaningful

xcomputed�xexact_solution:

It needs to be emphasized that residuals are imperfect measures of the

quality of a solution. For example, a particular coefficient aii may be very

large, as occurs when, so as to express one of the boundary conditions,

one of the unknowns is being fixed by inclusion of a source term defined as

bi ¼ aii xfixed�xiið Þ

wherein xfixed is the desired value. Then, evenwhen xii differs from xfixed by no

more than round-off error, the product aii(xfixed�xii) can appear as a residual

of large size. It is the xii values that need to be considered, not residuals, and if

the absolute value of xii�xfixed is less than the tolerance, that is, good

enough.

It may be appropriate to voice some further observations concerning the

linear equation solver literature at this point, namely, the following:

• It uses a known-only-to-devotees nomenclature, with no deference at

all to the solver-using community.

• This nomenclature consists largely of surnames of authors: “Krylov

subspace,” “Lanczos and Arnoldi iterations,” “Ritz approximation,”

“Hessenberg form,” “Householder matrix,” etc. The “tridiagonal

matrix algorithm” (see the succeeding text) is one of the few having

memory-assisting significance.

• Although it is recognized that the equation sets frequently arise from the

discretization of the differential equations of physics, the physical signif-

icances of their solutions are never disclosed.
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2.2.3 The Thomas (or tridiagonal matrix) algorithm (i.e., TDMA)
Great importance attaches to the sets of equations that arise when the grid

consists of a single chain of interlinked nodes, to which corresponds the

reduced equation set:

aixiþ aI�1xI�1þ aIþ1xIþ1 ¼ bI

The reason is that there exists the well-known Thomas algorithm for

solving the equations in question exactly without iteration. There is no need

here to set out the details. It suffices to state that a finite number of opera-

tions, proportional to the number of unknowns, proceed from one end of

the chain to the other and then back again. At the end of the sequence, all

values of xi are determined.

Of course, grids consisting of a single chain of nodes are rare; but the

TDMA can be employed for two- and three-dimensional (3D) grids as well,

albeit in an iterative manner. Consideration of how the TDMA then

behaves will now be used to explain the influence of coefficient ratios on

solver performance noted in Section 2.2.2 in the foregoing. A 2D example

suffices for which the typical equation can be written as

aI, jxI, jþ aI�1, jxI�1, jþ aIþ1, jxIþ1, jþ aI�j�1xI, j�1þ aI, jþ1xI, jþ1¼ bI :j

wherein the subscripts containing i and j indicate node locations in the two

coordinate directions.

It has been stated in the aforementioned that the PBP procedures treat

the values on the right-hand side of their equations as temporarily known,

which enables the left-hand side values to be updated. When the TDMA is

applied to 2D problems, one-half of the right-hand side values are assumed to

be known, that is, those in the second line of the equation; then, all the

values in the first line can be determined.

Now, the importance of the coefficient ratios can be recognized; if the

coefficients aI,j�1 and aI, jþ1 are much smaller than the other a’s, the pre-

sumption that xI�, j�1 and xI, jþ1 retained their previous iteration values is

of no importance whatsoever. This could happen if the domain were very

much larger in the j-direction than in the Ii-direction. The exact solution of

the 2D problem would then be obtained without iteration.

What if the aI,j�1 and aI, jþ1 are much larger than the other a’s? Then, the

changes effected by the TDMAwill be small, so that the process would have

to be iterated many times to attain convergence. The use of an accelerating

procedure would be very desirable.
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2.2.4 Acceleration by overrelaxation
When the series of values of xI,j, which are produced by a sequence of relax-

ations, is examined, it is usually found that the values are changing, iteration-

by-iteration, in the right direction, but too slowly. It is tempting to

“overrelax,” as it is often called, that is, to multiply the increments by some

factor greater than unity. But how big should it be?

An obvious answer, which the present author happens not to have found

in any textbook, is to compute the optimal factor by the following procedure:

• For the sets of xI,j’s, both before and after relaxation, compute the resid-

uals eI.

• Apply increments of twice the size resulting from the relaxation and calculate

the new residuals, that is, adopt tentatively an overrelaxation factor of 2.0.

• For each of the three sets of the residuals, compute the sums of their

squares.

• Assume that the sums of the squares of the residuals vary in a quadratic

manner with the relaxation factor (as they must). Hence, deduce what

relaxation factor will produce the minimum sum.

• Adopt the new xI,j’s that correspond to that factor and then make a new

relaxation step.

This procedure always works, sometimes spectacularly; and it has been

observed that it works better when the sums of the squares of eI/aii are min-

imized rather than those of eI itself. No claim is being made that it is better

than others advocated in the rather large literature concerned with choosing

optimal relaxation factors; but, about that literature, it should be remarked

that no other front-runner has appeared.

The reason is that mere overrelaxation is not enough, for it applies some-

what better corrections at the locations to which less adequate corrections

have already been applied but only to those locations. It takes too narrow

a view of what needs to be done. This can be understood by consideration

of Fig. 1.7, which illustrates what happens when the Jacobi PBP relaxation is

employed.

The problem is that of one-dimensional (1D) heat conduction in a slab of

uniform conductivity material, with its faces held at zero temperatures. The

initial guess is represented by the two upper sloping lines; and the correct

solution of the equations is the base of the triangle of which those lines

are sides. It is easy to recognize that temperature corrections are needed

everywhere; but a finite residual, that is, a heat imbalance, exists only at

the location corresponding to the apex of the triangle; so, it is only there

that the Jacobi relaxation makes any change.



First relaxation Initial guess

Second relaxation

Third relaxation

Exact solution

Figure 1.7 Graphic representation of a Jacobi solution process.
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A Jacobi relaxation, expressed graphically, is a line drawn between

nearby pairs of points across the spaces between them. Figure 1.7 shows

the sets of lines for the first three relaxations. They have resulted, it might

be said, in a “rounding” of the sharp-pointed initial triangle; but the third

relaxation curve is still far from the final destination, namely, the zero

temperature base.

Overrelaxation merely increases somewhat the cautious adjustments of

Jacobi because of its self-imposed restriction of attention to points that cur-

rently report errors. What is needed is an acceleration procedure with a

wider vision.

The same is true of much more sophisticated relaxation techniques such

as Stone’s “strongly implicit procedure” [8]. Coupled with TDMA-based

initial-guess improvers, such solver systems have for years provided satisfac-

tion without any overrelaxation at all.

However, for whatever reasons, the attention of the linear equation

solver specialist shifted long ago from overrelaxation toward acceleration

methods of a different kind, now to be discussed.
2.2.5 Conjugate gradient solvers
In 1952, Hestenes and Stiefel [8] introduced the “conjugate gradient”

method, which became for a time the leader of fashion. Its strategy was
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1. to start with a guessed set of xi values,

2. to calculate the associated residual eI,

3. to try another set of xi’s and calculate their residuals,

4. to deduce from the two sets of xi� eI pairs what would be a next try xi
that would probably reduce the sum of the squares of the residuals,

5. then to continue doing this until the sums became small enough.

The method (with various versions of step 5) appears to have had some suc-

cess; but it was discovered, not surprisingly, that step 1 was the weak point. If

one started a long way away from the final destination, the journey lasted

appreciably longer.

2.2.6 Preconditioned conjugate gradient solvers
It was therefore decided by someone (who is unclear) (Question to readers

#2: can anyone tell me, please?) to start by using a relaxation technique to

improve the “initial guess.” No great attention was at first paid to which

technique should be used; therefore, it was called, rather demeaningly,

the preconditioner; as though it was something to be used at the start and then

discarded.

But it was not in fact discarded; it was used again and again after each

conjugate gradient “improvement”; and it was at last discovered that some

preconditioners were much better than others. How much better, and in

what circumstances, is hard to discover from the literature. Therefore, the

present author, with Alexey Ginevsky of the Moscow Power Engineering

Institute, is working to create a software package for studying thematter, as it

might be said, experimentally.

Some preliminary results will now be shown. They relate to a 2D con-

duction problem in which temperatures at the boundaries of a square

domain of uniform conductivity are held at temperature 0.0, while the ini-

tially guessed temperature at all other points is 1.0. The grid is a uniform

128*128. The following images show temperature contours after each of

10 relaxer-plus-improver iterations, for six different solvers of conjugate gra-

dient type (Fig. 1.8).

Clearly, there are very great differences in convergence behavior. The

speed of convergence is successively greater for the first five solvers; but

the sixth solver is probably not converging at all, because it is producing

values of temperature that lie outside the range zero to one.

The names of the six solvers will not be disclosed here because the inves-

tigation, although still in its early stages, has already shown that the relative

merits of the solvers are very dependent on the physical problem in question.



Figure 1.8 Temperature contours produced by six different solvers. First iteration at
bottom, 10th at top. Colors mean: red T¼1; blue T¼0; white T>1 or <0.
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The purpose of presenting these preliminary results is simply to suggest that

contributions to knowledge in this field can be made even by those who are

not quite sure what a Krylov subspace actually is. If readers of this chapter

wish to take part in the investigation, the software package (called Solvers

Simulation Scenario) can be supplied to them.
2.3. Turbulence model trends
2.3.1 Origins
When the present author began his CFD career in the 1960s, the “turbu-

lence model” concept perhaps did not exist, although examples did. Indeed,

it may be that it was the publication of the book coauthored with Launder

[9] that popularized it. For this reason, the author wishes to state that in his

view, the pioneering publications were those of Boussinesq [10] in 1877,

Prandtl [11] in 1925, Kolmogorov [12] in 1942, and Prandtl again [13] in

1945. All of these made their contributions before the advent of digital com-

puters. After its advent, the first (and independent) pioneer was Harlow [14].
2.3.2 The effective-viscosity hypothesis
2.3.2.1 Early days
The contribution of Boussinesq was to guess that turbulent fluids were sim-

ilar to laminar ones but possessed a much greater than laminar “effective”

viscosity. It was a guess, not indeed very plausible to those who observed

turbulent plumes of smoke in the environment; but it proved to be over-

whelmingly seductive. If one could only find out what was the effective
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viscosity at any location, the world of fluid dynamics would indeed be

conquered!

Boussinesq’s guess was a “try-on”; but it is now sufficiently venerable to

be called a “hypothesis” and even a “model.” The other just-mentioned

pioneers all adopted it; indeed, it can be said that the purpose of their

endeavors was to devise a means for predicting what value should be ascribed

to the effective viscosity at any point within a turbulent flow.

2.3.2.2 The mixing length hypothesis
The laminar viscosity of a gas is known to be proportional to the mean free

path of the molecules and to their average velocity; and it was by analogy

with the mean free path that Prandtl [11] in 1925 introduced the concept

of the “turbulent mixing length.” He argued that momentum was transferred

between adjoining layers of fluid, having different mainstream-direction

velocities, by “parcels” of fluid that traveled a certain distance in a direction

normal to that of the mainstream before mingling with and so transmitting

momentum to the neighboring fluid.

Whatever the verbal argument employed, the result was the following

formula for the effective (kinematic) viscosity:

neff ¼ l2m du=dyj j ð1:1Þ
where lm is the mixing length and jdu/dyj is the absolute value of the local
mainstream velocity gradient. This of course simply transfers the search for

one unknown, neff, into the search for another, lm, but Prandtl made two

proposals with regard to the latter, namely, that

• close to a wall lm was proportional to the distance from the wall, y, say, and

• in limited extent turbulent flows remote from walls, such as jets, wakes,

and plumes, lmwas proportional to the distance across the turbulent region.

Values of the constants had to be deduced from experimental data, which

was somewhat tiresome; but it could be tolerated if their variation from

one situation to another proved not to be too great.

2.3.2.3 Two-equation turbulence models
In the early days of CFD (late 1960s), the mixing length hypothesis was

gratefully seized upon, for example, by the many users of the GENMIX

computer code [15]; and it proved to be nearly adequate for predicting

the so-called “parabolic” flows within pipes and diffusers and in jets, wakes,

and plumes. Even there, however, it was not entirely satisfactory, for exam-

ple, the ratio of lm to jet width proved to be 0.103 for plane jets and 0.075 for
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axisymmetric ones. The search, therefore, began for some way in which the

length scale or some other entity leading to neff, could be deduced.

The crucial advance appears to have been that of Kolmogorov [12], in

1942: he proposed that certain time-mean properties of turbulent flows

could be deduced from the solution of differential equations. The dependent

variables of these equations that he used were the

• kinetic energy of the fluctuating motion per unit mass, say k, and

• mass-average frequency of that motion, say f.

The terms in the equations were those to be found in all of conservation

type, namely, time dependence, convection, diffusion, volumetric source,

and volumetric sink.

Once k and f were known, Kolmogorov argued the effective viscosity

could be deduced from

neff ¼Ck=f ð1:2Þ
where C would be a constant deducible from experimental data.

The work of Kolmogorov did not, in fact, become known to the scien-

tific world until several years later, by which time a different two-equation

model had become popular, namely, that of Harlow and Nakayama [14]. Its

two dependent variables were the kinetic energy of the fluctuating motion,

k, and the volumetric dissipation rate of that energy, e; and from these, the

effective viscosity was to be deduced from

neff ¼Ck3=2=e ð1:3Þ
Both Kolmogorov’s andHarlow’s ideas were hopeful guesses, that is, “try-

ons”; but it can be said that the latter’s were rather more hopeful than the for-

mer’s, because Kolmogorov proposed no positive source term for f, whereas

Harlow proposed that the rate of generation of e per unit volume and time

should be proportional to k/e times the corresponding rate of generation of

k, that is, to the rate of energy generation by tangential and direct stresses.

The k� e hypothesis quickly and deservedly, because of its usefulness,

acquired the more honorific appellation “model,” to which indeed “classi-

cal” soon began to be added. Nevertheless, it is not disrespectful to raise an

eyebrow concerning both Harlow’s and Kolmogorov’s choices of second

dependent variable.

Their choice of turbulence energy k as a conserved property is under-

standable, for is not the first law of thermodynamics an energy conservation

law? Indeed, Prandtl himself also proposed [13] a one differential equation
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model in which the dependent variable was k. But conservation of f or e? Is it
reasonable to suppose that two bodies of turbulent fluid, rapidly mixed

together, will dissipate energy at the arithmetic mean of the two individual

dissipation rates? Physics knows of no such law.

Interestingly, both Saffman [16] and the present author [17], indepen-

dently of each other and of Harlow and Kolmogorov, proposed two-

equation models with k as the dependent variable of the first equation;

but as that of the second equation, they chose W, the sum of the squares

of the vorticity fluctuations. That quantity, both authors believed, could rea-

sonably be regarded as conserved: for vorticity is a conserved quantity.

Arguments were later advanced, and at the time thought persuasive, for

preferring the Harlow–Nakayama choice. Years later, however, the same

model was independently reinvented byWilcox [18]; and it is now believed

by some to be superior.

The history of turbulence modeling, viewed as a whole, can be seen as an

equal-measure mixture of insight and accident. It is, therefore, interesting to

speculate as to what might have transpired if Prandtl had happened to decide

to make the mixing length lm itself the dependent variable of his single dif-

ferential equation. What other terms might he have had invented in order

more or less to fit the known experimental data? A speculative answer is sup-

plied in “Try-ons” in Section 4.1.
2.3.2.4 Wall functions
In the early days of CFD, computers had very limited memory; therefore,

fine grids could not be afforded. Even for the small 2D parabolic problems

dealt with at the start [19], it was recognized that calculating the effective

viscosity appropriate to cells close to solid walls presented special problems.

The topic appears as “wall-flux relationships” in the index of the foregoing

reference. In the book on “elliptic flows” [20], which appeared 1 year later,

the entry is “wall functions,” which is how it is usually referred to nowadays.

The wall functions used at that time were based upon experimental mea-

surements rendered applicable to more general circumstances by expression

in terms of dimensionless quantities. For the simplest possible circumstances,

in which the relevant fluid properties (density and laminar viscosity) are con-

stants, as is also the shear stress because of the absence of mass transfer and of

pressure gradient, the effective viscosity in the near-wall layer can be

expressed as

neff ,nw=nlaminar ¼ yþ=uþ ð1:4Þ
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where yþ and uþ are the dimensionless distance from the wall and along-wall

velocity in the “law of the wall,” for which various empirically based expres-

sions are available. The one that the present author particularly favors,

because it covers the whole range in a single formula, [21] is

yþ¼ uþþ ekuþ�1�kuþ� kuþð Þ2=2� kuþð Þ3=6� kuþð Þ4=24� �
=E ð1:5Þ

where k¼0.417 and E¼0.86.

Some empirically based formulas exist that express the influence of mass

transfer through the boundary layer in reducing the effective viscosity, if the

flow is into the fluid, and increasing it, if the flow is toward the wall, and also

of the influences of pressure gradient and of roughness, but not when mass

transfer and pressure gradient are simultaneously present. Practically nothing is

known about the influences of nonunity viscosity and density.

Nearly half a century later, although the increase in computer power has

been immense, wall functions are still in use. And the reason is still the same:

even if computer power does suffice to allow use of arbitrarily fine grids close

to walls, knowledge of the physics of low Reynolds number does not have

the certainty or generality to make the expenditure worthwhile.

The point will not be expanded upon here; but it will be returned to

later, first when “direct numerical simulation” is discussed and later in rela-

tion to “urban-terrain” simulation.
2.3.3 Reynolds stress models
Experience of using two-equation models was mixed. Engineers were

pleased to have been supplied with computer programs that at least pur-

ported to handle turbulent flows at high Reynolds numbers. But the hopes

of engineering scientists that a model would be found that fitted a wide range

of phenomena, with very little ad hoc “tweaking” of constants, were disap-

pointed. So the question arose: if two equations do not suffice, why not try

using more?

Evidence had accumulated that one implication of the effective-viscosity

hypothesis was not always correct: The shear stress and the velocity gradient

did not always become zero at the same point; and why, anyway, should it be

supposed that the effective viscosity, even if it did exist, would be direction-

independent? These thoughts gave rise to the notion that the stresses them-

selves should be the dependent variables of differential equations; and this

meant that, since the stress tensor has many components,many equationsmust

be solved.
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Here, it should be mentioned that the world of engineering science had

changed immensely in respect to the number, and indeed nature, of the per-

sons participating in it. Professors, students, theses, journals, and publications

all proliferated, and so did the number and power of computers. Therefore,

novelties in turbulence modeling, provided that they were not too mind-

testingly novel, found many enthusiasts; and Reynolds stress models were

prominent among them.

The present author has not studied the literature in detail; but to judge

from the proceedings of the 2010 8th International Symposium on Engi-

neering Turbulence Modeling and Measurement [22], it cannot be said that

Reynolds stress models are as popular as they once were. Other “buzz-

words” are at least as prominent in the titles and abstracts of the papers.

2.3.4 DNS
Among the said buzzwords is DNS, standing for direct numerical simula-

tion, that is to say the solution of the unsteady laminarNavier–Stokes equa-

tions on a sufficiently fine grid and with sufficiently small time steps, for the

details of turbulent-flow fluctuations to be accurately simulated. It is not a

new line of study having been initiated in the 1970s (see Ref. [23] for a

review of early work), and since computers have increased in power by

many orders of magnitude since then, it is reasonable to expect that at least

some useful results would have emerged.

What results could these be? Those referred to in Section 2.3.2.4 in the

preceding text as being, regrettably, absent, namely, formulas for the effec-

tive viscosity of near-wall regions, as affected by pressure gradient, mass

transfer, and nonuniform properties. It would not matter if these formulas

were represented as provisional, because grid independence had not yet

been demonstrated. At least the trends would be instructive. Yet, there is

nothing so far as the present author can discover. One could suppose that

the practitioners of DNS studies are not greatly interested in the production

of results that others are waiting to use.

2.3.5 Large eddy simulation
Large eddy simulation (LES) is an evenmore prevalent buzzword thanDNS.

The underlying idea is that DNS requires finer grids and shorter time steps

than even the largest of today’s computers can accommodate. Very good!

Let us use the finest grids and shortest time steps that we can afford; and

for the finer-scale and more rapidly fluctuating phenomena, let us use

conventional RANS (i.e., Reynolds-averaged Navier–Stokes, even the
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now-by-some-despised k� e) modeling. Sometimes “hybrid” methods are

employed, whereby the whole space is divided into regions, with RANS

used in one and LES in another, the choice being made by the analyst so

as to maximize the accuracy/effort ratio.

It is a rational strategy to embark upon, tentatively; and there have been

many proofs that it enables realistic simulations to be made of flows, such as

those behind a bluff body, which exhibit unsteady wake structures fluctuating

periodically from side to side. The present author being an observer from a dis-

tance of this field of research makes only two remarks, namely, the following:

• It is evident from comprehensive publications such as Refs. [22, 24] that

many variants of LES are being tried without the emergence of one that

is widely acknowledged as superior to all.

• No attention appears to be being paid to the easy-to-activate ability of

LES to produce the pdf (i.e., probability density function) information

needed by heat transfer engineers for deducing volumetric averages of

the nonlinear sources characterizing thermal radiation, for example,

Ref. [24], admittedly confined to hydraulics applications, does not even

include “pdf” in its index.

Thermal radiation is here mentioned because it is an example of a practically

important physical process that, from the mathematical viewpoint, is

nonlinear; for emission, it is proportional to the fourth power of the absolute

temperature. This entails that a technique such as RANS, which can pro-

duce only time-averaged temperatures, cannot predict radiation well.

LES, on the other hand, because it can compute for what proportion of time

the temperature is by various amounts above and below the time-averaged

temperature, can calculate the time average of the fourth power of the tem-

perature. Reference [25] contains a full discussion of the possibility here

alluded to. Its main message is that the average attributes of a population

are rarely as interesting as the departures from the mean. It is only the strongest

gusts of wind that fell the trees.

2.3.6 Population-based models
2.3.6.1 The main idea
That a turbulent fluid is to be regarded as a population is not a new idea.

Prandtl, when introducing his mixing length hypothesis in 1925, clearly

envisioned “parcels” of fluid having different velocities and directions of

motion, which jostled with one another like members of an unruly crowd.

The increasing prevalence of the notion in the nine succeeding decades can

truly be recognized as constituting a “trend.”
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Members of human populations can be distinguished by reference to

many different attributes: Sex, religion, income, height, and corpulence

may all serve; and they have differing importance according to whether

one is seeking a wife, a basketball champion, or a sumo wrestler.

The same is true of turbulent fluids. Velocity is the attribute most per-

tinent to momentum transfer: temperature to thermal radiation, particle

density to sifting processes, and chemical composition to combustion.

Indeed, it is investigators of chemical reactions who have donemost to foster

the trend, as the following account will reveal. This account presents the

highlights of a much longer review of the subject written in 2010 [26],

together with those of some more recent material [27, 28].

Two important characteristics of populations, from the theoretical point

of view, are dimensionality and number of members. If the only attended-to

distinguishing feature of a group of men was their height, they would con-

stitute a 1D population. If it were meaningful to pay attention also to their

weight, their population would be classed as 2D; and if the men were sorted

additionally in respect to age, their dimensionality would be three. And so on

without limit.

In this chapter, for the sake of concreteness, attention will be confined to

1D and 2D populations; and the fluid considered will be a turbulent mixture

of gaseous fuel, air, and their products of combustion. As to the number of

members, it will be found that valuable information can sometimes be pro-

vided by considering populations with as few as twomembers. However, the

richness of information increases, as a rule, with the number of members

considered, just as is true of the fineness with which the dimensions of

the distance and time are discretized in conventional CFD.

2.3.6.2 Graphic representations
Population distributions can be conveniently displayed graphically, whereby

it is to be noted that they have their idiosyncrasies. Thus, the single vertical

line in Fig. 1.9 represents, by the horizontal position of the single red line of

unity height, the local and instantaneous temperature of a single-member

population of fluid, that is, of a fluid such as is envisaged by conventional

turbulence models.

Figure 1.10, by contrast, represents what might be the same turbulent

fluid by means of six lines at arbitrarily selected temperatures, the vertical

lengths of which represent proportions of time within which each the fluid

is supposed to possess the temperature corresponding to the horizontal posi-

tion of the line. It is somewhat similar to a pdf, which is a histogram, with
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contiguous vertical strips rather than vertical lines; it differs in that temper-

ature is being thought of as “quantized,” in the sense that fluid with

between-the-lines temperature is imagined never to exist at all.

Figure 1.10 relates to a 1D population, for temperature is all that distin-

guishes one member from another. The strict 2D counterpart would be a

plane, having temperature, say, as its abscissa and fuel concentration, say,

as it ordinates. Then, the quantized temperature–concentration pairs would

appear as dots scattered regularly or irregularly over its surface; and the mass

fractions of mixture material associated with each state, corresponding to the

lengths of the vertical lines in the 1D diagrams, would have to be represented

by the diameters of the dots.

Because of the eyesight strain that such a practice would impose, it is not

used. Instead, easier-to-draw-and-read contour diagrams will be used, in

which practice tends to blur the distinction between population distribu-

tions and pdfs that had just been made. However, it is only to the persons

writing the corresponding computer programs that the distinction is
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important; so it will not be referred to again here. Before the 2D represen-

tation is introduced, however, two other diagrams are worth inspecting.

Figure 1.11 shows how the temperature of a fuel–air mixture varies with

the fuel proportion, when the fuel is (upper, two lines) fully burned and

(lower, one line) fully unburned. The adiabatic temperature rise is the vertical

distance between the upper and lower lines.

Figure 1.12 shows the free-fuel and free-oxygen values for the fully burned

condition. The mixture fraction at which both oxygen and fuel are zero is

called “stoichiometric.”
2.3.6.3 The “TriMix” diagram, a “map” of fuel–air–combustion
product states

The “TriMix” diagram, now to be described, is a way of mapping the states

that lie between the fully burned and fully unburned extremes. Its vertical
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dimension is the adiabatic temperature rise resulting from complete combus-

tion of the fuel (to CO2 andH2O), hence, the “Tri” in its name. Its horizontal

dimension is the mass fraction of fuel-derived material or, in atomic terms,

(1.0� atomic_nitrogen_fraction/0.768). Points lying outside the triangle

correspond to nonphysical negative concentrations. They can, therefore,

be ignored. The TriMix diagram made its first published appearance in

Ref. [27] (Fig. 1.13).

The TriMix diagram will be used as a means of describing the states of

turbulent gas mixtures. But, first, its ability to display simple balance-based

properties of state will be illustrated by way of five contour diagrams in

Fig. 1.14. Any other properties, such as density and viscosity, can also be

computed and displayed as well as, if chemical kineticists are to be believed,

the rates of chemical reaction.
Pure combustion
products (Hot)

(Cold) (Cold)

Pure
air

All

possible

gas states

lie in this triangle

The TriMix diagram
(i.e., Temperature rise~Mixture fraction)

Pure
fuel

Figure 1.13 The TriMix map.

Figure 1.14 Contours displaying gas states on TriMix.
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There are three kinds of reaction to be considered, of which the rate con-

tours are shown (red is high rate; blue is low rate) (Fig. 1.15).

Of these reactions, the first is usually desired, being the main producer of

energy, whereas the other two are usually undesired, for they produce air

pollutants. The designer of a combustor therefore would like to know where

on the TriMix diagram his hottest gases lie. Preferably, it should be in the

stoichiometric-mixture -ratio region; for oxides of nitrogen are generated

if the mixture ratio is too lean there and smoke is generated if it is too rich.

It should be understood that so far, no particular flame has been considered

but knowledge has been assembled about the attributes of all possible members

of the gases-in-flame population.

2.3.6.4 The combustor-simulation problem
Figure 1.16 shows a TriMix diagram that could in principle represent a par-

ticular flame or rather a particular location within it, for its contours are those

of the proportions of time in which the gas at that location is in each of the pos-

sible states represented on the state map. If he possessed such a diagram for a suf-

ficient number of locations within his combustor, the combustor designer
Figure 1.15 Rate contours.

Figure 1.16 2D population distribution.
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would be able to deduce total rates of the three reactions. To provide him

with such knowledge is the task of the CFD specialist, who will, of course,

need a populational model of turbulence for the purpose.

2.3.6.5 When the turbulent fluctuations are ignored
Very few indeed are the CFD specialists who even know of the existence of

such models, let alone use them. It is common still to ignore the fluctuations

of concentration entirely, thus in effect presuming that the state of the mix-

ture at a particular location in the combustor is represented by a single point

on the TriMix map, as shown in Fig. 1.17.

Two finite-volume equations have to be solved so as to determine the

position of the point on the map: one formixture fraction and one for unburned

fuel fraction. It is better than nothing; but it is not very good. A one-member

population is no population at all.

2.3.6.6 EBU: the first two-member population model
The first-ever turbulent-combustionmodel that tookmeaningful account of

fluctuations appears to have been the so-called eddy break-up” (EBU)

model of 1971 [29]. This postulated a population of two members, both having

the same fuel ratio, with one fully burned and the other fully unburned. The two

members were supposed to collide, at rates fixed by hydrodynamic turbu-

lence, forming intermediate-temperature and intermediate-composition

material that quickly became fully burned. This model provided a (negative)

source term in the finite-volume equation for the unburned fuel fraction,

often expressed as

source¼�constant ∗ density ∗ r ∗ 1� rð Þ ∗ e=k ð1:6Þ
Figure 1.17 The no-fluctuations presumption.
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where r is the local reactedness of the mixture, so that r: (1� r) is the ratio of

burned to unburned material, and e and k are from the k� emodel of hydro-

dynamic turbulence (Fig. 1.18).

The EBU was successful in explaining some puzzling experimental data

regarding the almost-constant angle of turbulent premixed flames in the

wake of bluff bodies in plane-walled ducts; and the link that it made between

the combustion rate and the hydrodynamics of the flow has found its way

into almost every subsequent model of turbulent combustion.

2.3.6.7 A two-member model with Navier–Stokes equations for
each member

In the 1970s, problems connected with the steam generators of pressurized-

water-cooled nuclear reactors stimulated the development of methods of

numerical simulation of two-phase flows. This involved the formulation

and solution of two sets of interlinked Navier–Stokes equations, one for

each phase. Such an algorithm was IPSA (Inter-Phase-Slip Algorithm) [30].

Although conceived with intermingling steam and water in mind, the

algorithm could just as easily be applied to the hotter and colder gases that

were envisaged in the EBU concept and without its overrestrictive assump-

tion that they must be fully burned or fully unburned. Such a study is

reported in Ref. [31], which describes how a shock wave passes along a hor-

izontal pipe containing a combustible gas that is burning slowly.

Thewaveaccelerates thehot-gas fragmentsmore than thecoldones, causing

relativemotion. The relativemotion causes increased entrainment andmixing,

which increases the burning rate. This increases the strength of the pressure

wave. The result is that the deflagration turns into a detonation (Fig. 1.19).
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Figure 1.19 Instantaneous TriMix state and successive velocity vectors of colder and
hotter members of the two-member population (time increases with vertical position).

Figure 1.20 Pressure contours, distance horizontal, and time vertical.
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Figure 1.20 shows the corresponding contours of pressure, which is

shared by both gases.

These calculations were performed in 1983; but, for accidental historical

reasons, little attention was paid to further development of the model at that

time. Now that the ability to predict two-phase flow with interphase slip is

more widely spread, it is hoped this chapter may awaken wider interest.
2.3.6.8 A four-member population model
The puzzling facts about turbulent premixed flames in plane-walled ducts,

alluded to earlier-mentioned, were

• increasing flow velocity increases flame speed so the flame angle remains

constant and

• sufficient increase of velocity extinguishes the flame.

EBU, that is, a two-fluid model, explained the first, but not the second. The

solution [32] (24 years later!) was this: refine the (populational) grid. In other

words, use a four-fluid model (Fig. 1.21).
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Figure 1.21 The Scurlock [33] experiment that prompted the invention of EBU.

Figure 1.22 TriMix representation of the flour–fluid model.
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The presence of the hot, can burn fluid (see Fig.1.22) allows space for

chemical-kinetic limitations to enter. So extinction can be predicted (in

principle). The EBU postulate was that fully burned and fully unburned

gas fragments collided, at concentration-proportional rates, and the mixture

combusted instantly; but with four fluids, there are more pairings possible

and, therefore, more varied behavior (Fig. 1.23).
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The physical presumptions are that

• fluids 1 and 4 collide at a hydrodynamically controlled rate, like Prandtl’s

“parcels,” producing fluids 2 and 3;

• fluids 1 and 3 also collide to produce fluid 2;

• fluids 2 and 4 collide to produce fluid 3.

This fluid, being hot enough to burn, diminishes in mass fraction at a

chemical-kinetically controlled rate, which is why that of fluid 4, the prod-

uct of combustion, correspondingly increases.

Of course, a four-member population is “too coarse a grid” to permit

accuracy, for reaction rates vary with temperature (i.e., reactedness) in a

highly nonlinear manner, such as that of Fig. 1.24, wherein the fall to zero

at high temperature results from the complete consumption of the reactants.

For such a curve, probably as many as twenty fluids would be needed, if

their reactedness intervals were uniform, to achieve acceptable numerical

accuracy. But why not have 20? Or more?
2.3.6.9 The multimember population
Long though it had taken to move from two to four fluids, the advance to

multimember populations proceeded swiftly, both 1D and 2D populations

being investigated. Reference [26] provides access to many of the early

results, of which only the following set of four will be shown here. In order

to point out that how manymembers are needed can be determined by trial-

and-error. “Grid-refinement” studies are as practicable (and necessary) for

populational grids as they are for spatial or temporal ones.

The same is true of discretized populations. Grid-refinement studies, as

shown in Fig. 1.25, must be made for a 2D population at one particular geo-

metric location in a flame with reactedness as the vertical dimension and

mixture fraction as the horizontal one (TriMix not having been invented

at the time).
Rate

Temperature

Figure 1.24 Typical variation of reaction rate with temperature.



Figure 1.25 Predicted population distributions for 3*3, 5*5, 7*7, and 11*11.
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At this point, it is appropriate to disclose that there does exist another

approach to modeling turbulent combustion that can also be properly called

“populational”: it is that which is usually referred to as “pdf transport.” The

concept was first put forward in 1974 by Dopazo and O’Brien [34] in ana-

lytical form; then, in 1982, Pope [35] expressed it numerically. However,

the chosen numerical method was a version of the Monte Carlo method,

the unfamiliarity of which to most CFD specialists has perhaps hindered

its acceptance and further development.

Because its associated computer times are rather long, it is unfortunate

that the Monte Carlo lacks the time-saving grid-refinement (and grid-

coarsening) capability of the discretized-population approach, which is

advocated here. The latter provides non-absurd results even with a nine-cell

grid, as has just been seen; but the corresponding “nine-particle-group” ver-

sion of the Monte Carlo method would give no information that could be

relied upon at all.
2.3.6.10 Populational and conventional CFD compared
It is now necessary to explain in more detail how such population-

distribution diagrams are constructed. Let the colored-area proportion of

each box, representing the mass fraction of the population that possesses

the corresponding pair of attributes, be represented by the symbol mi, j.

Then, mi, j obeys a differential equation of the familiar “conservation” form:

@ rmi, j
� �

=@tþdiv r1vi, jmi, j
� �¼ div Gi, j gradmi, j

� �þSi, j ð1:7Þ

in which the four terms represent time dependence, convection, (turbulent)

diffusion, and sources in the usual way.

Although the form of the equation is familiar, there are several unusual

features to be remarked upon:
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• The subscripts i, j, which attach to the velocity vector v, are a reminder

that different populationmembers may possess different velocity compo-

nents, as was seen in Fig. 1.18 where the same pressure gradient had very

different effects on the hotter and colder gases.

• The source term has to express mathematically two quite distinct pro-

cesses, only one of which, namely, chemical reaction, is recognized

by conventional CFD.

• Even this has to be differently expressed, namely, as a diminution in the

mass fraction of lower-reactedness members of the population and an

increase in mass fraction of higher-reactedness members.

• The process for which conventional CFD has no counterpart is that

expressed earlier as “collision” between more remote members of the

population and consequent “production” of material of intermediate

attributes. Moreover, a new hypothesis has to be invoked in order that

sources and sinks can be evaluated, for example, as a generalization of

Eq. (1.6), in which the r(1� r) term can be recognized as the product

of the mass fractions of the two members of the population.

• Figure 1.26, extracted from Ref. [36], will enable the reader to envision

the possibilities.

These differences from conventional CFD are not such as to present any

computer-coding difficulty. Any commercial CFD code, therefore, pro-

vided that it allows its users to add source terms and make minor modifica-

tion to built-in diffusion and convection formulations, could be employed

for solving the populational turbulence model equations. Why, therefore, is

this seldom, if ever, done? The present author has no satisfactory answer to

that question.
Frequency in
population

Father

Promiscuous
coupling

Mendelian
splitting

Fluid attribute

Mother

Figure 1.26 Illustration of the “promiscuous-Mendelian” hypothesis.



35Trends, Tricks, and Try-ons in CFD/CHT

Author's personal copy
3. TRICKS

3.1. The IMMERSOL radiation model

3.1.1 The magnitude of the radiative problem
Turbulence, chemical reaction, multiphase flow, and radiation are the four main

phenomena for which CFD practitioners make use of “models,” that is, of

mathematical idealizations that, although known to fall far short of complete

representations, may still, in favorable circumstances, permit useful predic-

tions to be made. Of these,

• the first receives great attention from CFD specialists and enjoys high

respect as an engineering science challenge;

• the second is the active concern of, perhaps, an even greater number; and

• the third, though presenting fewer downright mysteries, is the subject of

continued and large-scale research.

Radiation, however, although presenting comparable difficulties, has been a

less popular subject for research. As a consequence, inability to model radi-

ation realistically is often the main cause of inaccuracy in CFD predictions.

This is understandably true of high-temperature processes, such as those in

the combustionchambersof engines and furnaces; but it is no less trueof lower-

temperature ones. Situations in which convective, conductive, and radiative

modes of heat transfer may all have similar orders of magnitude include elec-

tronic equipment and the living accommodation of human beings.

Radiative heat transfer can be described mathematically with exactness.

Perhaps for this reason, it is commonly supposed that enabling a CFD code

to add radiation to its predictive capabilities is simply a matter of selecting

and attaching to it one or other of the available equation-solving methods.

These go under the names of Monte Carlo, discrete transfer, discrete ordi-

nate, zone, etc.

Unfortunately, consideration of how these methods actually perform,

when applied to problems of more than modest size, makes plain that they

must all require very much more computer and elapsed time than anyone

can afford. This is so even with neglect of the influences of

• wavelength on absorption and emission,

• impingement angle on the reflectivity of surfaces,

• temperature on the radiative properties of materials,

• chemical composition and “surface finish” of those materials, and

• the complicating presence of turbulent fluctuations of temperature and

of multiphase flow.
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3.1.2 The action-at-a-distance difficulty
Radiative heat transfer differs in character from conductive and convective

heat transfer in that it involves “action at a distance.”

Heat conduction to a point is influenced by the temperatures of the mate-

rials at the immediately surrounding locations. Heat convection to a point is

influenced by the temperature on the immediately upstream side. Heat radi-

ation, by contrast, can depend on the temperatures at all surrounding points, no

matter how far away they are. Admittedly, the more remote points usually

have less influence than the nearer ones; but the temperature of the sun

affects the heat flux to Earth, that is, remote enough by human standards.

One way of expressing the difference between various modes of heat

transfer is to state that the “mean free path of radiation” is often much larger

than the dimensions of the domain of study. The “mean free paths of con-

duction and convection,” on the other hand, are usually much smaller, being

of the order of the distance between molecules or (in turbulent flow) of the

size of the smallest eddies. That of radiation varies inversely with the amount

of radiation-absorbing material per unit path length, which is why it is so

large in “outer space,” where there is no such material.

Where, however, much radiation-absorbing material is present, for

example, within a furnace, where pulverized-coal particles and finely

divided soot absorb scatter and reemit radiation, the mean free path of radi-

ation can be much smaller than the apparatus dimensions. Then, radiative

transfer can be regarded as similar to heat conduction, but with an increased

thermal conductivity.

The “trick,” which will now be described, is to treat radiation through

empty space as though it there too behaved in a conduction-like manner. It is

embodied in the so-called [54] IMMERSOL (i.e., immersed solid) model

of radiation. Since this, although much used by the present author and

his colleagues for many years, has never been adequately described in print,

the omission will now be rectified.

3.1.3 IMMERSOL: the main features
3.1.3.1 The dependent variables
IMMERSOL distinguishes three temperatures for a control volume in a

medium, which is transparent to radiation, namely,

• T1, the temperature of the first phase, for example, air;

• T2, the temperature of the second phase, if present, for example, a cloud

of solid particles suspended within the air; and

• T3, the “radiosity temperature” defined in the succeeding text.
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If R stands for the radiosity, that is, the sum of all radiation fluxes traversing

the control volume, regardless of direction and wavelength, then T3 is

related to it by the equation

R¼ sT 4
3

where s is the Stefan–Boltzmann constant (5.670373�10�8 W m�2 K�4)

andT3 ismeasured in degrees Kelvin, as are the other temperatures. Therefore,

T3¼ s�1R1=4 ð1:8Þ

3.1.3.2 The differential equations
The variables T1 and T2 obey differential equations of the familiar conser-

vation kind, distinguished by special source terms, thus,

@ c1r1T1ð Þ=@tþdiv c1r1v1T1ð Þ¼ div l1gradT1ð ÞþS1,2þS1,3 ð1:9Þ
and

@ c2r2T2ð Þ=@tþdiv c2r2v2T2ð Þ¼ div l2gradT2ð ÞþS2,1þS2,3 ð1:10Þ
wherein

• S1,2 and S2,1 represent energy transfers per unit volume between phases

one and two;

• v represents the velocity vector;

• S1,3 and S2,3 represent volumetric rates of radiative heat absorption and

emission;

• l1 and l2 represent the sums of the thermal conductivities, laminar plus

turbulent, of the respective phases;

• c represents specific heat;

• r represents density; and

• t represents time.

T3 obeys a similar equation but with fewer terms. Specifically, it has a zero

on the left-hand side because radiation is not convected in either time or

space. Its equation is

0¼ div l3gradT3ð ÞþS3,1þS3,2 ð1:11Þ

3.1.3.3 The source terms
About S1,2 and S2,1, nothing needs to be said here except that they represent

the interphase transfer processes in the usual way. It is the S1,3, S2,3, S3,1, and
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S3,2 terms that require discussion. The IMMERSOL presumption is that

they are related to the three temperatures via the following equations:

S1,3¼�S3,1¼ e01s T4
3 �T4

1

� � ð1:12Þ
and

S2,3¼�S3,2¼ e02s T4
3 �T4

2

� � ð1:13Þ
wherein e01 and e02 are the emissivities of their respective phases per unit

length. These quantities are supposedly numerically equal to the absorptiv-

ities, which measure the proportion of the radiation flux that is absorbed per

meter of its passage through the medium in question.
3.1.3.4 The value ascribed to l3
IMMERSOL expresses the thermal conductivity pertaining to the radiosity

temperature T3 in terms of the emissivities per unit length e0 and the scat-

tering coefficients per unit length s0 of the two phases in the transparent-to-

radiation space and the gap between nearby solid walls Wgap as

l3¼ 4sT 3
3= 0:75 e01þ s01þ e02þ s02

� �þ1=Wgap

� � ð1:14Þ
The origin of this equation, and the meaning ofWgap, will be explained

in the succeeding text.
3.1.3.5 The boundary conditions
At the walls of, and everywhere within, solid bodies surrounding or

immersed in the transparent medium, T3 is taken as being equal to the tem-

perature T1 or T2, according to the phase in question. However, the radiant

flux at suchwalls depends not only on theT3 gradient in themedium close to

the wall but also on the surface emissivity of the wall itself, in a manner that

will be discussed in Section 3.1.4.4. At open boundaries of the domain, net

radiation fluxes are ordinarily prescribed.
3.1.4 IMMERSOL: the rationale
3.1.4.1 Starting points
In its neglect of wavelength dependency, the IMMERSOL model departs

radically from reality; but it does so in amanner that is commonly regarded as

acceptable: it employs the widely used “gray-medium” approximation

described in many textbooks, for example, in Sparrow and Cess [38].
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In that book, and elsewhere, two other accepted concepts are described

that IMMERSOL has adopted, namely, those of the optically thick and opti-

cally thin limits. Here, “thick” and “thin” compare the size of the gap

between the solid walls enclosing the transparent medium with what can

be called the “mean free path” of radiation in that medium, that is, the recip-

rocal of (e0 þ s0).What is distinctive about IMMERSOL is that it is valid both

at and between those limits.

Both extremes arise in practice. Within a large coal-fired furnace, the

cloud of burning particles and gaseous combustion products can be regarded

as optically thick, for so much solid surface is present per unit volume that

rays emanating from the middle of the furnace must be multiply reflected

before they escape to the water-cooled walls. The air within the rooms

and corridors of inhabited buildings, by contrast, constitutes an optically thin

medium; wall-to-wall radiation suffers no impediment.

For optically thick media, there exists a formula that connects the radi-

ative heat-flux vector q, in W m�2, with the gradient of the radiosity. It is

usually associated with the name of Rosseland [39], and it is

q¼� 4=3ð Þ e0 þ s0ð Þ�1sgrad T4
� � ð1:15Þ

Here, T is the local temperature of the transparent medium.

If the equation is expressed in terms of an effective thermal conductivity

leff, involving gradT3 rather than grad(T3
4), the expression for lref becomes

leff ¼ 16=3ð Þ e0 þ s0ð Þ�1sT 3
3 ð1:16Þ

At the other extreme, when the medium is so thin as not to participate at

all in the radiative heat transfer between two solid surfaces, at temperatures

T3hot and T3cold, say, the heat flux q is well known to obey the formula

q¼ 1þ 1� ehotð Þ=ehotþ 1� ecoldð Þ=ecoldf g�1s T 4
3hot�T 4

3cold

� � ð1:17Þ
Equation (1.15) is of the flux-proportional-to-gradient kind that CFD

codes are well equipped to solve. Equation (1.17) is of the less amenable

action-at-a distance kind. The question arises: how can the latter be made

more like the former?
3.1.4.2 First steps
Rewriting Eq. (1.17) for the case in which (Thot�Tcold) is small and in which

the wall emissivities are unity yields
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q¼ 4sT 3 Thot�Tcoldð Þ ð1:18Þ
where T stands for either temperature because they are nearly equal.

Since the temperature gradient equals (Thot�Tcold)/Wgap, the effective

conductivity that corresponds to Eq. (1.18) is simply

leff ¼ 4WgapsT 3 ð1:19Þ
where Wgap stands for the distance between the solid surfaces. So, the con-

ductivity increases with interwall distance, as it must do if the heat flux is to

be independent of that distance.

It is interesting to compare the value of this conductivity with the ther-

mal conductivities of common materials as seen here:
Atmospheric air
 Water at 0 �C
 Steel
0.0258
 0.569
 43.0
wherein the units are W m�1 �C�1.

In the same units, and with a wall gap equal to 1 m, the values of leff at
various temperatures in degrees Celsius are
T3
 20
 100
 500
 1000
 1500
 2000
leff
 5.706
 11.77
 104.8
 467.9
 1264.1
 2663.6
Even taking into account that turbulence may increase the effective con-

ductivity of a fluid by two or three orders of magnitude, it can be concluded

from these tables that radiative heat transfer can be significant at room tem-

perature and that at high temperatures, it becomes dominant.
3.1.4.3 Between the “thick” and “thin” extremes
Let now the reciprocal of conductivity be considered, that is, the resistivity,

leff
�1, measured in �C mW�1. For the thick medium, Eq. (1.16) yields

l�1
eff ¼ 3=16ð Þ e0 þ s0ð Þ sT3

� � ð1:20Þ
and, for the thinnest-possible totally empty medium, Eq. (1.19) yields

l�1
eff ¼ 1= 4WgapsT3

� � ð1:21Þ
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It is, therefore, not unreasonable to suppose that, for intermediate con-

ditions, the two multipliers of sT3 should be added so as to create a more

generally valid single resistivity formula, thus

l�1
eff ¼ 3=4ð Þ e0 þ s0ð Þþ1=Wgap

� �
= 4sT 3
� � ð1:22Þ

This is the source of Eq. (1.14), introduced in Section 3.1.4, and it can be

described as the first part of the “IMMERSOL trick.” But there is more

to come.
3.1.4.4 Wall emissivity as an extra resistance
Equation (1.14) is used in IMMERSOL to calculate the T3 diffusion fluxes

of the finite-volume equations, which CFD codes easily solve. However,

something special has to be done for coefficients when one node lies in

the transparent medium and the other within a solid, as exemplified by nodes

B and A in the Fig. 1.27, in which, for simplicity, the transparent medium

consists of a single phase.

As is usual in CFD codes, the conductivities pertaining to the cell are

stored at each grid node. Therefore, the radiative heat flux crossing the

boundary between cells B and C will be deduced from the formula:

fluxB to C ¼ T3,B�T3,C
� �

= xI�xBð Þ=l3,Bþ xC�xIð Þ=l3,C
� �

where x is the horizontal coordinate.
Solid impervious to
radiation

A S B I C

Medium transparent to
radiation

Surface of nonunity
emissivity

Figure 1.27 Computational cells near-solid surface.



Figure 1.28 T1 and T3 profiles near a solid surface.
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The calculation of the radiant flux at the S interface, however, requires

more careful study because the surface emissivity can cause a discontinuity of

T3 gradient there, as is illustrated in Fig. 1.28, which shows the postulated

profiles of both T3 and T1 because of their inescapable interaction.

Here, it is postulated that T3 and T1 are equal to each other within the

solid; but, whereas the latter has a finite gradient everywhere, the former

may have an infinite one at the interface between the phases. The fluxes

of energy in question are as follows:

• Conduction from A to S, namely, (T1,A�T1,S)l1,A/(xS�xA)

• Conduction and convection from S to B, namely, (T1,S�T1,B)l1,B/
(xC�xS)

• Radiation from S to B, namely, (T3,S�T3,B)/{(xC�xS)/l3,Bþ (1�eS)/
eS} wherein the term involving eS is inserted so as to conform with

Eq. (1.17) in the preceding text. This is the second part of the

“IMMERSOL trick.”

Requiring the fluxes to be in balance at the surface S enables the equal-by-

definition values ofT3 andT1 there to be evaluated. The necessary formula is

as follows:

T1,S¼T3,S

¼ T1,Al1,A= xS�xAð ÞþT1,Bl1,B= xB�xSð Þ�

þT3,B= xB�xSð Þ=l3,Bþ 1� eSð Þ=eS
� �

= l1,A= xS�xAð Þ�

þl1,B= xB�xSð Þþ1= xB�xSð Þ=l3,Bþ 1� eSð Þ=eS
� ��

ð1:23Þ
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3.1.5 IMMERSOL: conclusions
The equations now assembled have transformed the problem of numerically

simulating radiative heat transfer into one that can be solved by any com-

puter code capable of handling conductive and convective heat transfer.

The fields of T3 can now be computed, and the radiant heat flux vector q

any point can be deduced from its gradient via

q¼�l3gradT3, ð1:24Þ
with l3 calculated from Eq. (1.14).

That is not to say that its predictions will always be in close agreement

with experimental reality. Only for partly or wholly transparent layers

between parallel uniform-temperature walls is that to be expected. But,

although further research is needed, limited experience has shown that it

never makes physically unreasonable predictions; and its computational

expense is small.

So small is it indeed that IMMERSOL can be used when wavelength

dependency is too great to be ignored. This arises, for example, when

short-wavelength solar radiation provides a source of heat, that is,

redistributed byway of long-wavelength low-temperature infrared radiation

between the terrestrial objects on which it impinges. Thus, to use T3 as the

measure of the latter radiation and T4, say, as a measure of the former would

be much more realistic than to ignore the wavelength dependence entirely,

as is commonly done. To split the wavelength ranges into 10 or more bands

would not significantly strain computer resources.

The author is, however, not aware of any practical exploitation of this

possibility. As mentioned in the preceding text, radiative-transfer research

is not very fashionable.
3.2. The wall-distance trick
3.2.1 How to calculate Wgap

The seriously interested reader of Section 3.1 will have perceived a lacuna in

the argument, for nothing has been said about how the vitally important

Wgap quantity is to be calculated or indeed about what it means for spaces

that are cluttered with solid objects of various shapes and sizes. A “data

center,” that is, a large hall filled with computer cabinets and air-cooling

equipment, is a case in point. Radiative heat transfer plays a significant part

in lowering the temperature of the “hot spots,” in which the center manager

must watch out for. But what meaning has Wgap in such a cluttered space?
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There is an answer and again it has a somewhat “tricky” character: as does

IMMERSOL itself, it produces answers that are exact in simple circum-

stances and never unreasonable in others. In order to whet the reader’s appe-

tite, attention is drawn to three images (Figs. 1.29–1.31), the origin of which

will be explained.

Let the task be to apply the IMMERSOLmodel for calculating the rate of

radiative heat transfer between the two boxes of Fig. 1.29, the walls of which

are held at different temperatures. The radiationwill supposedly pass through

the also empty duct that connects them, the walls of which will be supposed

insulated. The emissivities of duct and box walls will be supposed known.
Figure 1.29 Computational grid for two boxes and a connecting duct.

Figure 1.30 Computed contours of distance from a solid wall.



Figure 1.31 Computed contours of gap between walls.

45Trends, Tricks, and Try-ons in CFD/CHT

Author's personal copy
Since IMMERSOL has reduced the task to the level of a heat-

conduction one, it is easy; but it requiresWgap values to be known for every

point in order that local conductivity can be computed.

Figure 1.30 shows the distribution not ofWgap but of a related quantity,

Wdis, the distance of each point within the boxes or duct from the nearest

solid wall. This is not a quantity that IMMERSOL uses; but it is calculated at

the same time as Wgap.

Understandably, the lowest values are at the walls themselves; and the

highest values are at the centers of the boxes. The corresponding values

of Wgap appear in Fig. 1.31.

Equally understandable,Wgap appears to have a uniform value inside the

connecting duct, for its walls are indeed parallel. Within the boxes, it is less

uniform; but its highest value is about twice as large as that within the duct.

These are plausible findings, the origins of which lie in the numerical solu-

tion of a Poisson equation now to be described.
3.2.2 The L equation
The trick that IMMERSOL has exploited comes from the turbulence

modeling field. There, it is often desired to calculate the distance of a point

in a fluid from the nearest solid wall; and a convenient way of doing so is to

solve the following differential equation:

divgradL¼�1 ð1:25Þ
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with the boundary condition L¼0, wherever solid is present. Since the

original publication [40] is somewhat obscure, the idea that it expresses will

be spelled out at length.

The equation is similar to that for temperature within a uniformly con-

ducting medium, having a uniform heat source, and in contact with solids

and other surfaces at which the temperature is held at zero.When it has been

discretized and expressed in customary finite-volume form, it is easily solved

by the linear equation solver of any CFD package, whether the geometry is

1D, 2D, or 3D.

The variable L is not itself the distance from the wall, even though it is

proportional to that distance at locations very close to a wall. Its dimensions

are indeed those of length-squared. However, the wall distance can be

deduced from the solution for L, as can also a plausible estimate of the effec-

tive distance between walls. The method is to derive, by considering a sim-

ple geometry, namely, that between two parallel walls, relationships

between

• the distance from the wall Wdis and

• the distance between walls Wgap, on the one hand, and

• the local value of L and

• the local value of its gradient, on the other

and thereafter to presume that the relationships have general validity.
3.2.3 The parallel-wall situation
Let the distance measured from one wall be y, and the distance to the oppo-

site wall y1. Then the 1D form of Eq. (1.25), namely,

d2L=dy2¼�1, ð1:26Þ
can be integrated to give

dL=dy¼�yþA, ð1:27Þ
where A is a constant, and then further to give

L¼�y2=2þAyþB, ð1:28Þ
where B is another constant.

Insertion of the boundary condition L¼0 at y¼0 and y¼y1 yields

B¼ 0, and A¼ y1=2

with the result
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L¼ y y1�yð Þ=2 ð1:29Þ

L0 ¼ y1=2� y ð1:30Þ

where L0 stands for dL/dy.
Elimination of y1 from the two equations yields

L¼ y L0 þy=2ð Þ ð1:31Þ

which is a quadratic equation, easily soluble for y.

From its solution, follow with Wdis substituted for y and Wgap for y1:

Wdis ¼ L02þ2L
� 	1=2

�L0 ð1:32Þ

Wgap¼ 2 L02þ2L
� 	1=2

ð1:33Þ

It is these equations that are employed generally, L and L0 being obtained
for each point in 2D or 3D space from the numerically computed solution of

Eq. (1.25).

They have been found to give plausible results in all situations; but of

course, neither Wdis nor Wgap has an unequivocal meaning when the walls

exhibit corners, whether concave or convex.

It is interesting in this connection to consider a pipe of circular

cross-section, for which it is again easy to obtain an analytical solution

for L. The earlier-mentioned equations then show that the expression for

Wdis is exactly correct in the immediate vicinity of the wall; and it rises

to a maximum equal to radius divided by the square root of 2 at the center

of the pipe.

Wgap on the other hand varies between pipe radius times 21/2 at the cen-

ter to the radius times 2�1/2 near the pipe wall. One can therefore conclude

that even extreme departures from the presumed parallel-plane conditions

lead to not wholly implausible results.
3.2.4 Concluding remark
Before leaving the topic of wall-distance and wall-gap calculation, it is nec-

essary to make clear that the L-equation method has no physical basis what-

ever. Its status is that of a “lucky guess,” its only justification being that “it

works.” Those who are reluctant to use so dubious a trick should ask them-

selves: “What else can I do?”
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3.3. The cut-link trick
3.3.1 Introduction
It has already been mentioned in Section 3.1, under “Trends,” that grids of

arbitrary polygonal cells are giving way in respect to popularity to variants of

the “cut-cell” or “immersed boundary method” [53] kind. The present

author has for several years been using one variant of the former, of which

the details have never been fully published; moreover, he is at present in the

process of developing a simpler but more powerful variant. It therefore

accords with the purposes of this chapter to describe the first variant, to

explain why it is now being superseded, and to record in more detail than

is usual what the main features of the new variant actually are.

The first variant was called “PARSOL,” because it handled cell PAR-

tially filled with SOLid material. The new one is called “SPARSOL,” which

stands for Structured PARSOL. Strictly speaking, both variants have some

unstructured features, but SPARSOL has fewer than PARSOL, as will be

explained. The main difference is that PARSOL was a true “cut-cell” tech-

nique in that rectangular cells, of which some edges were cut by the surfaces

of solid bodies, were regarded as divided into two “subcells.” In general, these

were of nonrectangular shape. Balance equations were formulated by

treating both these subcells as control volumes. The number of equations

to be solved therefore increased, which required somewhat troublesome

changes in the solver.

SPARSOL, by contrast, considers cut links rather than cut edges, a link

being the line joining two cell-center nodes. It therefore creates no new

control volumes or corresponding equations; so the solver requires no

change. What it does is to make such changes to the coefficients and perhaps

also to the source terms of those equations as will best express the interactions

between the fluid and the solid materials.

“Best express” is the phrase used, not “perfectly express”; and it is preferred

advisedly. Perfection is never to be expected of a finite-volume (or finite-

difference or finite-element) method. “Near enough” is all that can be hoped

for; and if it is conjoined with simplicity, it is very good indeed.
3.3.2 The pros and cons of PARSOL
The major “pro” of PARSOL was of course that it removed entirely the

grid-generation problem, which so troubled the arbitrary unstructured-grid

users. Defendants of the latter practice argued that theirs was more

accurate—and probably, they were right. But how great the difference in
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accuracy was and whether it was worth the effort were never systematically

put to the test. (Question to readers #3: Is the last statement true? And, if

not, where can a systematic comparison be found?)

When first introduced, PARSOL was used only for hydrodynamics

problems. Therefore, no finite-volume equation for the in-solid subcell

had to be solved; and the only changes to the coefficients of the finite-

volume equations were those that accounted for the reduced volume areas

and distances of the in-fluid subcell when compared with the uncut whole

cell. An account was taken of the size and orientation of the (often) inclined

interface between the solid and the fluid; and the wall functions used in cal-

culating the velocity components and turbulence quantities were duly mod-

ified. That pressure gradients were no longer alignedwith velocity directions

was not considered however; nor was the fact that sometimes the true thick-

ness of the fluid boundary layer was not, as was tacitly presumed, much larger

than the near-wall cell size.

It was when PARSOL started to be used for conjugate heat transfer

problems that the in-solid subcells had to be used as supernumerary finite

volumes. The changes made to the solver were at first excessively explicit,

which entailed that the convergence of the temperature equation was some-

times inordinately slow. Later, more implicitness was built-in, with conse-

quent increased speed of convergence, and still was added simultaneous

solution for the radiosity temperature, that is, the T3 of IMMERSOL.

This last addition increased the complexity of the solver, which occa-

sionally led to divergence or at least to physically dubious solutions. It

was while seeking to interpret and correct these deficiencies that it was rec-

ognized that it was the extra-control-volume feature that was the basic cause

of the trouble, thence sprang the search for a better alternative, with

SPARSOL as the result.

There was however an independent and even stronger reason for making

the change, namely, that PARSOL could not cut its cells into more than two

parts: one solid and one fluid. If it was to handle thin solid objects that cut the

grid obliquely, only a very fine grid could be used; and this incurred serious

computer-time penalties. SPARSOL is free from this crippling restriction.

3.3.3 Detecting the link intersections
3.3.3.1 The problem
Whether they are the cut edges of PARSOL or the cut links of SPARSOL,

both procedures require intersections of lines with surfaces to be detected,

their locations stored, and associated geometric quantities to be computed.
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Detection can be done in more than one way. Having seen no discussion of

this important matter in the literature, the author will provide one, based on

his own experience.

First, it must be explained that the shapes of the surfaces of solid objects

are always supplied in one of two ways: via formulas or via facets. The posi-

tion, shape, and size of a sphere, for example, can be completely and com-

pactly specified by the formula:

x�x0ð Þ2þ y� y0ð Þ2þ x�x0ð Þ2¼ r2 ð1:34Þ
where x, y, and z are points on the surface; x0, y0, and z0 are the Cartesian

coordinates of the center; and r is the radius. Just four parameters will suffice.

For such shapes, it is easy to determine the location of intersections of their

surfaces with any straight line, whether an edge or a link, by way of algebra.

Far more often, however, the same sphere will be described by way of

facets, as illustrated in Fig. 1.32, which shows a somewhat crudely facetted

sphere within its bounding box. The information needed to describe it is

voluminous, consisting mainly of the Cartesian coordinates of each facet

vertex. The facet method is nevertheless often preferred for the use of for-

mulas because it can be used for objects of any shape. A procedure must be

therefore devised for determining the intersection, if it exists, of each facet

with each grid line. Such a procedure will be described; it can be used for

two- or 3D Cartesian or cylindrical-polar grids, whether structured or

unstructured. Extension to body-fitted grids is also feasible.

3.3.3.2 The 2D projection method (2DPM)
In this, the first-used method, now superseded, the facets of the object were

projected on to a plane normal to one of the coordinate directions, as tri-

angles or quadrilaterals.
Figure 1.32 Facetted sphere.
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Cell edges appeared in the projection plane as points, and the existence of

an intersection was evidenced by the cell-edge point lying within the

projected facet area. This was detected by calculating the areas of triangles

having facet-edge projections as base and the grid-line projection as

apex. The determination of whether the grid-line projection lay inside or

outside the facet projection depended on the signs of these areas. Thereafter,

the normal-to-plane location of the intersection could be calculated, and the

geometric properties of the cut-cell computed and stored for use.

The disadvantages were the slowness of the area calculation, the hit-or-

miss nature of the decision as to whether points lay inside or outside, and the

obscurity of the intersection calculation. Moreover, as implemented, no

advantage was taken of the economies that can be made when the flow sit-

uation to be simulated is two- rather than 3D. The 2DPM coding was thus

found, after intensive study, to have several drawbacks, of which the most

serious were as follows:

• It could not be relied upon always to detect intersections between facets

and cell edges, because of the lack of control of “tolerances,” that is, the

differences of distance between what was and what was not an

intersection.

• It could not directly treat the commonly occurring 2D flow situations, but

had to convert them into pseudo-3D ones, which was at best uneconom-

ical and at worst contributed to the “missed-intersection” phenomenon.

• Even when intersections were correctly detected and their positions

computed, the excessive amount of computation involved imposed a

serious delay on the start-up of the true CFD calculations. This was

the most serious of the three.

3.3.3.3 The 2D section method (2DSM)
It was for these reasons that the now-preferred 2D section method was

invented. It is so named because it finds first the straight-line segment that a

facet makes if it intersects one of the planes containing cell edges (for

PARSOL) or cell centers (for SPARSOL). Then, it seeks intersection points

that the segment may make with the grid lines corresponding to the two

other coordinate directions. Figure 1.33 illustrates this.

The procedure is as follows:

• Choose a first constant-grid coordinate plane. If the grid is cylindrical-

polar, of course, the grid coordinate cannot be the radius, for that is not a

plane. Then, lines corresponding to the not-chosen grid coordinates can

be imagined as inscribed on the chosen plane either as straight lines or (in

the cylindrical-polar case) as circles.
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Figure 1.33 Illustrating the 2DSM.
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• Check the coordinates of the vertices of the facet to determine whether

they all have equal values of the normal-to-plane coordinate. If they do,

no intersections can exist, so the facet can be discarded; otherwise, pro-

ceed as follows.

• Examine each edge of the facet in turn and consider the coordinates of the

vertices at each of its ends. If the normal-to-plane values of all of these are

less than that of the plane or all of them exceed that value, no intersection is

possible so the facet can be discarded; otherwise, proceed as follows.

• For each pair of vertices lying on opposite signs of the chosen plane, cal-

culate the in-plane coordinates of the location of the vertex-joining edge

with the chosen plane. This lies at one end of a facet-with-plane inter-

section segment.

• By comparison of the coordinates of these pairs with the coordinates of

the “inscribed” grid lines, determine whether the segment intersects one

or more of these. If not, discard the facet; otherwise, proceed as follows.

• Use the appropriate algebraic expression, quadratic, or linear according

to whether the coordinate in question is or is not the radius, to calculate

the coordinates of the intersection point.

• Unless the problem is 3D rather than 2D, choose a second constant-

coordinate plane and repeat the process, with one difference: it is

necessary, having found a facet-plane intersection segment, to seek its

intersections only with the grid lines corresponding to those of the first

chosen plane. The reason is that intersections with other grid lines have

already been found.
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• The final step is to record which part of the intersected grid lies inside the

object by making use of the convention connecting the order of listing of

the facet vertices with the side of the facet on which the object itself lies.

• When this has been done for all the facets of the current object, repeat

the process for the next object and continue thus until all the objects have

been dealt with.

3.3.3.4 Other aspects of facet-grid-line intersection detection
The just-described 2DSM works well when it is presented with a well-

ordered set of objects and associated facets. However, architects and others

often present, as objects around which they require flow to be computed,

collections of facets, produced by Computer-Aided-Design packages,

which are far from being well ordered. From the architect’s viewpoint, they

are satisfactory, for the buildings and other objects have the right visual

appearance, but commonly encountered defects are the following:

• Adjacent facets may bear conflicting information about which side is

“in” and which side is “out.”

• Some facets are absent, so that the surface of a solid object appears to have

holes in it.

• Some needless facets are supplied, having identical vertex coordinates

(listed but in a different order), for example, those representing the floor

of one room and the ceiling of the room below it, when the flow in nei-

ther room has to be computed.

• Far too many facets are supplied, for example, those representing the

individual steps in a staircase, for the computational grid to be take

account of.

It is desirable therefore to pass such CAD-package output through a facet-

fixing program before it is delivered to the CFD code; but even after this,

some difficulties may be encountered. Specifically, the facets supplied

may show that some of the objects overlap, in the sense that two or more

objects lay claim to the same locations in space. Alternatively, two objects

may touch, in the sense that their facets both intersect the same grid line

at the same location, but from opposite sides. These problems will be dis-

cussed in SPARSOL terms, which is to say that the grid lines in question

will be internode links rather than cell edges.

The “overlapping” problem can be solved by imposing the rule “last

claimant wins.” There can be only one material at any particular grid node,

for example; and the “last-prevails” principle allows material settings to be

made without inquiry as to whether a previous one has been made at the

node in question.
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The “touching” problem can be solved by the same rule. All that is nec-

essary is to arrange that no decisions about the magnitudes of internode coef-

ficients are made until all material settings have been completed.

One final problem should be mentioned: a link between grid nodes can

be cut twice by facets belonging to the same body. This can occur when the

thickness of an object is small compared with internode distances. In such

circumstances, it might be said that the grid ought to be refined, but with

structured Cartesian or cylindrical-polar grids, the needed refinement near

the body results in not-needed refinement elsewhere. The more economical

solution is to move one of the nearby grid nodes so that it lies within the

object; then, one of the two intersections moves from the cut internode link

to another, which was not previously cut. Thus, the double-cut difficulty is

removed. But this is just one aspect of geometry adjustment, discussed in the

succeeding text.

The overlapping, touching, and double-cutting problems are not con-

fined to objects that are defined by facets; they can arise also with objects

defined by formulas. After the intersections have been found, it is immaterial

which method was used to define the shapes.
3.3.4 Changing coefficients in SPARSOL
3.3.4.1 The problem
The coefficients connecting the solved-for variables at neighboring grid

nodes typically represent the influences of diffusion (laminar and turbulent)

and convection. In the immediate vicinity of a solid surface, it is usually the

former influence that predominates; therefore, the present discussion will

consider diffusive influences exclusively. Moreover, for concreteness, the

dependent variable considered will be temperature; and a single phase will

be supposed present at each grid node. The material property in question is

thus the thermal conductivity, l.
The commonly used formula for the heat transfer coefficient, CLM,

between points L and M in Fig. 1.34 is, because all the material between

the points is solid,

CLM¼ lsolidA= xM�xLð Þ ð1:35Þ
wherein x denotes the horizontal position andA is the surface area of the face

between the cells. That for CMR, on the other hand, is

CMR ¼A= xMR�xMð Þ=lsolidþ xR�xMRð Þ=lfluidf g ð1:36Þ
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Figure 1.34 Cells wholly filled with solid (darker) of fluid (lighter).

Left Middle    Right

Figure 1.35 Solid object cuts link MR in nonstandard position.
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wherein xMR denotes the horizontal position of the interface between

M and R. This has the value WM/2, where WM is the horizontal width

of cell M.

3.3.4.2 Changing the distances
Consider now the situation in Fig. 1.35.

The equation to fit this situation is obviously

CMR¼A= x0MR�xM
� �

=lsolidþ xR�x0MR

� �
=lfluid

� � ð1:37Þ
wherein x0MR now denotes the horizontal position of the location at which

the object surface cuts the internodal link MR. This location is known as a

consequence of the operations described in Section 3.3.4.1. Therefore, two

actions to be taken after finding the intersections are first to determine which

nodes lie in the solid and second to recalculate the distances from the nodes

to the interfaces.

A major defect of PARSOL was its inability to handle thin objects. How

SPARSOL deals with them is shown in Fig. 1.36.
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Figure 1.36 Thin object cuts two neighboring links.

Left Middle Right

Figure 1.37 Thin object cuts one link.
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Figure 1.36 differs from Fig. 1.35 in that link LM is intersected and link

MR. This simply entails that the equation

CLM¼A= x0LM�xL
� �

=lfluidþ xM�x0LM
� �

=lsolid
� � ð1:38Þ

must be used also, the quantity x0LM being modified from its standard value.

What if the two surfaces of the thin body cut the same internode link as

shown in Fig. 1.37?

More than one strategy could be chosen; but the one here illustrated is

move the node. The equations are therefore

CMR¼A= x0MR�x0M
� �

=lsolidþ xR�x0MR

� �
=lfluid

� � ð1:39Þ
and

CLM ¼A= x0LM�xL
� �

=lfluidþ x0M�x0LM
� �

=lsolid
� � ð1:40Þ

wherein x0M replaces xM. This is all that needs to be said.
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3.3.4.3 Changing the areas
It is, however, not only the distances that require to be changed in order to

express the influence of nonstandard intersections of internode links. Con-

sider, for example, the situation illustrated in Fig. 1.38.

Earlier, the intersected horizontal (red) links were considered; but atten-

tion is now turned to the nearby not-intersected vertical (green) links; and

the question is: how should these be modified so as to account for the non-

standard locations of the red-link intersections? The answer is obvious: by

way of the areas in the coefficient formulas. Obviously, the coefficient

between the LowLeft and HighLeft nodes, for which lfluid is the correct

conductivity, is associated with a less-than-standard area.

Correspondingly, the coefficient between LowRight and HighRight,

for which lsolid is the correct conductivity, is associated with a greater-

than-standard area.

These area changes can be deduced from the red-link-intersection loca-

tions resulting from the actions described in Section 3.3.4. How? By linear

interpolation. Are there interpolation formulas that will take into account

the putative curvature of the object surface also? “No” is the answer, to

which might be added: “Of course not. Do not expect too much. If you

want more accuracy, use a finer grid.”

In the previously mentioned examples, it has been only the red links that

have been intersected. What should be done if only the green links had been

intersected is obvious: y-distances should be changed rather than x-distances;

but what should be done of both are intersected as illustrated in Fig. 1.39.

The safest answer to this question is to do nothing special at all. The

LowLeft-to-LowRight and LowRight to HighRight links are not
High
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y

Right

Figure 1.38 How intersected links influence areas.
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Figure 1.39 Nodes with two links.
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intersected; but they do have slightly reduced areas. The other links are sin-

gly intersected; so they should have their coefficients computed from

Eqs. (1.39) and (1.40). More complex rules could be thought of; but it is

better to accept the “do not expect too much” advice.
3.3.4.4 Adding fluid-side resistances
It was mentioned in the preceding text that if the flow is turbulent, the ther-

mal conductivity to be used is the sum of the laminar and turbulent values.

However, close to walls, the turbulent contribution varies steeply with dis-

tance from thewall; and with structured grids of economically tolerable fine-

ness, this often means that the only way to determine an appropriate

“effective” value is by use of a “wall function.” No difference in principle

arises when links are cut by the surface of bodies at nonstandard locations;

but of course, the changed distances have to be taken into account.
3.3.5 Modifying sources
Source terms, in balance equations for mass, momentum, energy, and chem-

ical species, are often proportional to the volume of the cell or more pre-

cisely to the volumes of each of the materials within the cell. The same is

true of the terms representing variations with time when as unsteady-state

computation is in progress.

PARSOL modified the volumes associated with cut cells, diminishing

these by the amount that was ascribed to the “subcells” that it created.

SPARSOL also modifies volumes associated with each of its nodes. Since

the number of these nodes remains constant, some of its volumes are dimin-

ished and others increased. The magnitudes of these changes are computed
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from the link-intersection locations in straightforward ways, too obvious to

be spelled out here.

Momentum sources play a special role, for the presence of solids within the

fluid commonly forces the velocity at nodes within them to have the value

prescribed or calculated for the object. In SPARSOL, these are best specified

by way of cell-wise linearized sources, thus

v_source¼ large_number v_object� v_localð Þ

This has the result of introducing such a large momentum source, if the

local velocity differs at all from the object velocity that v_local is forced to

equal that velocity very closely. Very often, the object is not moving, so that

v_object equals zero, as is shown in Fig. 1.40, where SPARSOL is being

used to represent the flow deflection caused by an airfoil at a high angle

of incidence.

Of course, with such a coarse grid, the velocity distribution close to the

airfoil surface cannot be well represented; therefore, the calculated frictional

force on the object will be very far from correct. This is the reason why those

concerned with the simulation of flows around aircraft, for which the fric-

tional component of drag is very significant, often go to great trouble in

order to place finely divided cells in the boundary-layer region.

Figure 1.41 illustrates this trend.

The computational expense is very great. Therefore, two remarks are

worth making:
Figure 1.40 SPARSOL’s use of momentum sources to represent an airfoil.



Figure 1.41 Unstructured-grid refinement near-solid surface.
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• First, it is improbable that the grid is evermade fine enough for numerical

accuracy, for turbulence models require energy sources to be computed

and these depend upon the squares of velocity gradients. Very fine grids

are needed if these are to be accurate.

• Second, there is a much simpler and cheaper way of achieving the

required fineness. It is to calculate only the pressure distributions in

the air just outside the boundary layer by means of a 3D elliptic-flow

solver (which may even be of the highly economical potential-flow

kind). Then flow within the boundary layer can be calculated on as fine

a grid as necessary by a parabolic-flow solver.

The second feature may, like IMMERSOL, LTLS, and SPARSOL, also be

regarded as a “trick,” additionally “unfair” because it robs the heavy-weight-

computing enthusiast of the excuse for demanding ever more number-

crunching power. Yet, the argument in its favor is compelling. The essential

characteristic of boundary layers is that they have one predominant direction of

flow. Then, if the mathematical solution procedure itself “goes with the

flow,” 3D problems can be solved with a 2D grid; and one does not need

much memory for that.

Of course, the 3D and 2D calculations have to be linked. The parabolic

solver has to report to the elliptic one the “displacement-thickness” distribu-

tion over the aircraft’s surface, in order that the elliptic solver canmodify its first

guess,whichmay have been to assume that the thickness was zero everywhere.

So back-and-forth iteration is necessary. But it is not to be expected that many

iterationswill be needed; unless, that is, the conditions are close to those leading

to boundary-layer separation. Aircraft-safety rules preclude that, in any case.

The idea of coupling potential-flow with boundary-layer calculations is

far from new; and a fairly recent NASA “2D-airfoil-challenge” exercise [37]
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showed that its accuracy is comparable with that achievable by all-elliptic 3D

Reynolds-averaged Navier–Stokes solvers. But there, the boundary-layer

methods employed were all of the preCFD integral-equation kind; and these

are restricted to 2D. No one seems to have thought of using numerical par-

abolic solvers, which, of course, are not so restricted. Was not, after all, the

now-widely used SIMPLE algorithm [5] first introduced for 3D boundary-

layer calculations?

3.3.6 Concluding remarks about SPARSOL
SPARSOL, as just described, is simply a variant of what has come to be

known as the immersed boundary method.Whether it is superior or inferior

to others can be determined only by extensive tests that are beyond the pre-

sent author’s competence. All that can perhaps be claimed is that, because of

the publisher’s generous space allocation, it is at least the most completely

described. (Question to readers #4: is this true?)

4. TRY-ONS

4.1. A differential equation for mixing length

4.1.1 What ludwig prandtl might have done
Prandtl was nearing the end of his life when he published his one-equation

turbulence model in 1945; so perhaps he did not have time to recognize that

a more advantageous dependent variable than k might have been chosen.

Since his time, other choices have been made, in particular that of Nee

and Kovasnay [41] in 1968.

The novelty introduced by them was the proposal that the effective vis-

cosity, neff, as well as appearing as a coefficient in the diffusion terms, should

itself appear as the dependent variable of the differential equation. And why

not? If Harlow and Kolmogorov could treat dissipation rate, e, and fre-

quency, f, as conserved properties, why not neff as well?
Had Ludwig Prandtl followed the same line of thought, then the

k-equation would not been needed. He might well have chosen his mixing

length as the conserved property; then the “mixing length transport model”

might be among those used by engineers today.

4.1.2 The spalart–allmaras viscosity-transport model
Before speculating further about what Prandtl might have done, it should be

mentioned that, long after it had become widely accepted that only turbu-

lence models with two or more differential equations were worthy of study,
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the Nee–Kovasnay innovation was revived and developed by Spalart and

Allmaras [42, 43]. Their one-equation model has been shown often to per-

form and more sophisticated ones, at least in the aeronautics-related prob-

lems for which it has been tested. Extensions to supersonic flow have been

successfully made [44].

Inspection of the now-extensive literature on the subject has evoked the

following thoughts in the present author’s mind:

• Spalart’s remark in Ref. [44], “turbulence modeling can stagnate,” is a

wise warning, which he at least is heeding.

• Also notable is his remark: “No deep reason was seen why two equations

were indispensable, although this remains a widespread position.”

• He has also felt free to formulate his one equation in unconventional

ways, using vorticity rather than strain rate in source terms and allowing

the turbulent-diffusion terms to conserve not neff but neff
1.62.

• It is with such a free-from-preconception attitude that any alternative

one-equation model should be considered.
4.1.3 The “mixing length transport try-on”
Much is known about the distributions of mixing length in turbulent flows,

including that, at high Reynolds numbers, it increases with flow-direction

distance x, raised to a power, equal to

• unity, in a plane mixing layer, a plane jet, or a circular-section jet, each

having its own proportionality constant;

• one-half in a plane wake, for example, behind a circular cylinder; and

• one-third in an axisymmetric wake, for example, behind a sphere.

Moreover, it tends to be 0.41 times the distance from the wall, as a solid wall

is approached; and downstream of a grid of parallel rods, it tends to be 0.103

times the distance between the rods [45]. Within a long pipe of circular

cross-section, it obeys the Nikuradze [46] formula:

lm=R¼ 0:14�0:08 1�y=Rð Þ2�0:06 1� y=Rð Þ4 ð1:41Þ
where y is the distance from the wall and R is the pipe radius.

In the semilaminar region very close to a wall, the formula of van Dri-

est [47] is believed to prevail. It is

lm=y¼ 0:41 1� exp �yþ=26:0ð Þf g ð1:42Þ
All this constitutes perhaps a richer body of empirical information than

the neff transport modelers start from.
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The task is to devise a differential equation of the form

@ rlmð Þ=@tþdiv r1vi, j lm
� �¼ div Ggradlmð ÞþS ð1:43Þ

which, when solved numerically, will yield mixing length distributions that

accord with these simple-situation findings; then, it can be reasonably

hoped, the solutions to the equations with different boundary conditions

will also fit experimental findings reasonably well.

The crucial question is: how should the source-and-sink term, S, be

expressed in terms of velocities and other variables, so as best to fit the data?

A reasonable first guess for high Reynolds numbers would be

S¼ const1�strain_rate� lm�0:41�Wdis�1:03�profile_widthð Þ ð1:44Þ
wherein

• lm is the local mixing length, to be used with Eq. (1.1);

• const1 is a dimensionless constant or a function of dimensionless proper-

ties of the local flow, chosen so as to fit known experimental data regard-

ing mixing length distributions, such as those cited earlier;

• strain_rate would be deduced from local velocity gradients in a

conventional manner;

• Wdis is distance from the wall computed by way of the “thick” of

Section 3.2; and

• profile_width would be introduced so as to reflect the influence of such

geometric factors as the spacing of the rods in an upstream grid.

Equations (1.42) and (1.43) are only first guesses; and a combination of phys-

ical intuition and numerical resourcefulness will be needed to translate them

into finite-volume equations and convergent solution procedures. For

example, at the upstream edge of an ideal mixing layer, the strain rate is infi-

nite and lm is zero; for the furthest upstream control volume, an approxima-

tion must be employed for their finite product that makes physical sense.
4.1.4 How “const1” might be determined: the “reverse-engineering”
approach

Publications about turbulence models commonly report what empirical

auxiliary functions are to be used, but not how they were arrived at. In

the present case, those functions have not yet been determined; so it is

proper to propose how they could be. The approach suggested is here called

“reverse engineering,” for it starts with given facts and tries to work out how

they came about.
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The facts to start with are the experimentally determined velocity pro-

files. For the simple situations listed in the preceding text, these can be

approximately represented as piecewise polynomials. Then, the “reverse

engineering” starts by imposing the corresponding velocities, if one’s CFD

code allows it, at the corresponding nodes of the computational grid, by sup-

plying linearized momentum sources to the cells surrounding them.

Thus, if the source is specified as, say, 1�e6 (uexperimental�u), it will be

large enough to make the calculated velocity differ little from the experi-

mental one; and its magnitude, if printed out, will provide significant Infor-

mation. Thus, if the effective viscosity of the computer code has been set

equal to zero, the printed-out sources disclose magnitudes of the shear

stresses that are present in the real flow.

The next move is to calculate, from the printed-out source differences,

what are the shear forces at the boundaries of the velocity cells. This can be

done by working from the free-stream boundaries of the layer, where the

sources are zero, toward the center. From the shear forces and the known

velocity differences, the effective viscosities for each internode link can

be computed. If the code permits the link-by-link insertion of effective vis-

cosities, doing this and observing whether the printed-out sources indeed

now become small, is a useful test of the accuracy with which the whole

operation has been conducted.

Once the effective viscosities are known, the corresponding mixing

lengths for each link can be computed. Then, solution for lm can be activated,

the just-computed “experimental” values being fixed by linearized-source

terms, in the same way as was done for velocity. The then-printed-out lm
sources provide information about the cell-by-cell values of the whole of

the right-hand side of Eq. (1.43), that is, the contributions of both the S

and the G terms. Disentangling the two contributions will involve (cau-

tiously) making some presumptions.

Fortunately, not one but several simple situations exist to which this

“reverse-engineering” process can be applied; and the relative importance

of the S and the G terms is unlikely to be the same in each. Therefore, dis-

entanglement may not prove to be too difficult. PhD students indeed are

likely to relish the challenge.

In addition to the simple situations already cited, there exist others for

which reliable data are available. The “backward-facing-step” is one that

has been used for the critical assessment of two-equation models [48]. It

is of interest because it exhibits free-shear-layer and near-wall and 2D rec-

irculation effects. Whether the one-equation “mixing length transport
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model” could handle all three simultaneously is a question of great interest.

The Spalart–Allmaras model does not appear to have been tested for

this flow.

4.1.5 Concluding remarks about mixing length transport
The purpose of the foregoing paragraphs is not to persuade readers that lm is a

better dependent variable to use than neff or k, but merely that itmight be, and

that nobody knows.Not only can turbulencemodeling research stagnate, but

also it has stagnated. It is hoped that some readers of this chapter will see and

seize some of the many opportunities for further progress that still exist.

4.2. The population approach to swirling flow
4.2.1 The problem
Swirling turbulent flows are of great practical importance. They are

employed

• in gas-turbine combustors in order to promote mixing of fuel and air and

thereby to increase thrust per unit volume and combustion efficiency;

• in the large mechanically stirred reactors of chemical industry for similar

purposes;

• in hydro- and aerodynamic cyclones in order to promote unmixing, that

is, the preferential separation of elements of the mixture experiencing

different body forces.

Such flows are also regarded as of such scientific interest that special confer-

ences of theoreticians are devoted to them. Perusal of their proceedings,

however, reveals an astonishing fact, namely, that although the

preferential-separation process experienced by materials carried by the

swirling flow is considered that the turbulence itself is subject to preferential

separation receives no direct attention. Instead, attempts are made to

“tweak” the constants and functions of turbulence models of the kind that

are used for nonswirling flows, but with meager success.

4.2.2 A “try-on” solution
In a recent unpublished presentation at such a conference, [55] to which he

now seeks to give wider publicity, the author proposed that the analogy with

two-phase flows should be exploited. Figure 1.42 illustrates how a stream

comprising a uniform mixture of water droplets of water suspended in

vapor-phase steam behaves when it flows through a curved duct. The flow

is from bottom to top. The colored contours denote volume fractions, yel-

low signifying “high” and light blue “low.”
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Clearly, and understandably, the greater centrifugal forces on the drop-

lets have caused the water to migrate to the larger-radius region, forcing the

air to move to the inside of the bend. The point of the demonstration was to

argue that, if the force differential had been caused by differences of velocity

rather than of density, the effect would qualitatively have been the same.

In connection with Fig. 1.20, it was seen that the use of a two-member

population of a single-phase mixture, when Navier–Stokes equations are

solved for each of the members, can simulate qualitatively the transition

from deflagration to detonation.May it not be therefore that the samemodel

could at least throw some light on the “velocity-sifting” phenomenon that

gives swirling turbulent flows their special character? And that a multi-

member model might do still more?

For multimember populations, to solve Navier–Stokes equation sets for

each member would be excessively costly; and it would be disproportionate

in view of the guesswork that would be needed concerning the friction

forces opposing the sifting process. Nevertheless, first steps with such guess-

work applied to a 17-member model were reported in the just-mentioned

presentation, the application being to an imaginary flow in the space

between concentric cylinders, rotating about their common axis at different

velocities, as shown in Fig. 1.43.
Figure 1.42 Computed volume fractions of water (left) and steam (right).

Figure 1.43 Flow between rotating coaxial cylinders.
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It was postulated that at some entrance plane, on the left, the velocity

population was extremely orderly, each member being located at the radius

that corresponded to a linear velocity distribution from inner to outer radius.

Turbulent mixing was then postulated as occurring, with a diffusivity

corresponding to experimental data in fully developed plane channel flow.

The consequent intermingling of the members was then computed.

The contour diagrams in Fig. 1.44 were computed for cylinders of infi-

nite radius, that is, for no curvature. They showed for 3 of the 17 fluids how

turbulent mixing causes the mass fractions to spread with distance down-

stream. This diffusion process is opposed by the collision/engulfment pro-

cess that tends to even out the local probability density functions; and the fact

that the contour lines become horizontal on the right indicates that the two

opposing phenomena finally balance (Fig. 1.45).

Thereafter, calculations were carried out with finite radius, and in order

to throw light on the role of the centrifugal forces, two cases were consid-

ered. In the first, it was the larger-diameter cylinder that had the higher

velocity; in the second, it was the smaller-diameter one. One would expect

the first to diminish the intermingling effect and the second to increase it.

This expectation is borne out by the corresponding fluid-population distri-

butions shown in Figs. 1.46 and 1.47, respectively.

The calculations just described were made to show that a multimember

population, with longitudinal velocity as the population-distinguishing

attribute, could be made at little expense and that the results are qualitatively

plausible. The exercise was of the “try-on” character; and the conclusion no

more than: “Yes, I think it might work.”

Perhaps that is more or less what Ludwig Prandtl thought after his first

experiments with the mixing length model.

4.3. Hybrid CFD “Try-on”
4.3.1 The general idea
The word “hybrid” is often used nowadays in the turbulence modeling lit-

erature to describe the practice of employing different models of turbulence

in different parts of the same field of flow. An example is the use of a steady-

state RANS model close to a wall and an unsteady-state LES one

elsewhere [49]. The “try-on” now to be proposed can be regarded as an

extension of the idea: it involves using not only different formulations of

the governing equations in the different regions but also different methods

for solving them.

The idea is of course not new: and it was in common use by aerodynam-

icists long before CFD existed. Even then, aerodynamicists could predict
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Figure 1.45 Computed fluid-population distribution far downstream for a locationmid-
way between the moving surfaces, for the case of zero curvature. Fluid 9, the middle-
velocity population member, has the highest mass fraction, namely, 0.187.
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Figure 1.46 Computed fluid-population distribution far downstream for a locationmid-
way between the moving surfaces, for the case of faster-moving outer cylinder. Fluid 9,
the middle-velocity population member, still has the highest mass fraction, and it has
risen to 0.21.
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their lift and drag. They used a combination of potential-flow theory with

boundary-layer theory, proceeding iteratively:

• First source–sink distributions were sought that caused streamlines to

coincide with the shape of the airplane. This led to distributions of pres-

sure over the surface.
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Figure 1.47 Computed fluid-population distribution far downstream for a locationmid-
way between the moving surfaces, for the case of faster-moving inner cylinder. Fluid 9,
the middle-velocity population member, still has the highest mass fraction; but it has
fallen to 0.081.
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• Then, they used boundary-layer theory to calculate the “displacement

thickness” of the layer, that is, the extent to which the airplane was big-

ger than at first supposed.

• Then, they repeated the first step with a new specification of airplane

shape; and the second with the consequentially new pressure

distribution.

• And so on until the changes of displacement-thickness distribution

became small enough to ignore.

Of course, the boundary-layer theory was primitive, being of the 2D

integral-profile kind. However, the principle was sound, and it still is.

A recent application of the method to a 2D airfoil was referred to in

Section 3.3.5; and the accompanying remarks will now be expanded upon.
4.3.2 The partially parabolic method extended
When, at Imperial College in the 1970s, the SIMPLE method, having been

invented for 3D parabolic-flow problems, was recognized as applicable to

elliptic problems also, both 2D and 3D, it was the latter that attracted the

most attention. However, computers were still small, and any memory-

saving device was welcome. One such device was the so-called partially par-

abolic method [50–52]; and the efficacy of the method was demonstrated by

reference to turbulent flows in curved ducts and around the sterns of
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seagoing vessels. This exploited the fact that, the downstream-to-upstream

terms in the momentum equations being negligible, the equations became

parabolic in nature; so they could be solved, once the pressure distribution

was known, by the marching-integration procedure of Ref. [5], which

required only 2D storage. Only the mass conservation equation, fromwhich

the pressure was computed, exhibited significant downstream-to-upstream

influences; so it alone required a 3D grid.

The method attracted no attention outside Imperial College; and the

present author’s interests became deflected in the direction of two-phase

flows in nuclear steam generators and in gas-turbine combustion chambers.

To neither of these was the partially parabolic method applicable, for they

exhibited no predominant direction of flow. Easily achievable developments

were therefore not then pursued; but three such advantageous developments

will now be outlined, as follows:

1. In the all the work carried out in the 1970s, the same grid was used for the

pressure as for the other variables; but there was no need for this, and

advantage in respect to realism could have been attained by using much

finer cells in the parabolic grid than in the elliptic one. This is affordable,

because the parabolic grid requires only 2D storage.
To allow for differences in the main flow-direction step sizes, the

pressure gradients used in the momentum equation would have to be

interpolated; but, since pressure varies much more gradually than other

variables, little diminution of accuracy is to be expected.
2. In the early work, the volumes of space traversed by the elliptic and the

parabolic calculations were also the same; but in the applications envis-

aged in the present “try-on,” which include flows around aircraft and

missiles, the parabolic calculation would be confined to the regions in

which velocity gradients were significant, namely, close to the wall,

and in the jets and wakes; for elsewhere, the flow is inviscid. This would

generate further economies.

3. There would also be no need to have only one parabolic grid. Indeed as

exchanges of information between elliptic and parabolic solutions

proceeded, the stagnation point on the airplane nose might well shift

from iteration to iteration. So a different parabolic grid would be needed

each time. But why not? Grid generation for parabolic flows is very easy.

Moreover, it is probable that several parabolic grids would be better than

one; and the upstream boundary condition for farther-downstream ones

would be reduced by interpolation in the values at the outlet surfaces of

upstream ones.
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It remains to ask: Why is this hybrid “mix-and-match” method not

used? Are the advantages of economy and realism here envisaged not

worth having? Or not recognized? Or recognized, but deemed illusory?

Or is it that the possibility of solving 3D boundary-layer equations

numerically is not widely understood?
4.3.3 Simulating automobile aerodynamics
Early CFD calculations of flow around automobiles made by the present

author used computational grids such as that in Fig. 1.48. They extended

over a much larger volume than that occupied by the vehicle; and, despite

the fact that in the greater part of the volume the flow was inviscid, the 3D

Navier–Stokes equations were solved throughout (Fig. 1.49).

It was a foolish practice of course; but even now, it is customary to

employ a single grid, albeit of unstructured form. Therefore, it appears rea-

sonable to ask: Why not use instead

• a 3D elliptic potential-flow solver for the inviscid flow, as has been pro-

posed in Section 4.3.2 for the airplane;

• a 3D Navier–Stokes parabolic solver for the roof and sides; and

• embedded 3D Navier–Stokes solvers for the wakes of the car body, the

wheels and the wing mirrors?

As compared with the airplane problem, the iterative interfacing will be

somewhat more complex; and it is probable that more iterations will be

needed before the interactions between the regions—elliptic-inviscid,

parabolic-viscid, and elliptic-viscid—have procured mutually agreeable

solutions of the interlinked equations. It is not certain that the final result

of the simulation will be the same as that of a single fine-grid elliptic
re 1.48 The whole grid.
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Navier–Stokes solution for the whole space or that the total time-and-

memory computer resource will be smaller. But, it seems highly probable

and certainly worth a try.

4.3.4 Environmental applications
For the design of wind farms and the investigation of atmospheric-pollution

phenomena, it is necessary to calculate the fields of velocity, temperature,

and concentration in the atmospheric boundary layer, in spaces that extend

several kilometers in the horizontal directions but havemuch smaller vertical

heights. Such problems are well suited to solution by the partially parabolic

method; although the wind directions are different near the ground at higher

altitudes, the differences are not so great that a single direction of “marching

integration” cannot be found for which all normal-to-plane velocities are

negative. In other words, a “predominant direction of flow” can exist.

Probably no part of the domain can be regarded as inviscid; so the prob-

lem is more akin to the curved-duct and ship’s-stern problems, which were

solved already in the 1970s. So much the better! Nevertheless, it would be

possible to profit from the iteration-between-linked-regions technique that

has been outlined in the foregoing Sections 4.3.2 and 4.3.3. Finer-grid par-

tially parabolic regions can be embedded inside coarser-grid ones, in the

same way as elliptic regions.

Lastly, let flow over an urban terrain be considered, for example, the

campus of the university of Delft, shown in Fig. 1.50 [56]. It is customary

to employ 3D elliptic solvers for simulating such flows, with the finest grid

that can be afforded (1 m in the case illustrated).



Figure 1.50 Urban-terrain simulation.
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Inspection of the streamlines confirms the expectation that the prevailing

wind enforces a predominant direction of flow in most of the space but that

recirculation regions do exist in the wakes of the buildings. It follows that the

original partially parabolic method cannot be used; but the extended one,

which allows the embedding of recirculation regions as was outlined in con-

nection with flow around cars, can be employed.

Of course, the number of recirculation regions may be rather large; but

• the flows within them need not be simulated simultaneously;

• visiting them in the order upstream-before-downstream will maximize

speed of convergence;

• usually only a few of them are of interest to the user, so it makes sense to

select them for most frequent and finest-grid treatment.

Generally speaking, the hybrid-CFD approach of the present “try-on” will

allow, it is suggested, choices to be made that are optimal in respect to both

economy and fitness for purpose.
4.3.5 Generalizing wall functions
In natural- or urban-terrain simulations, it will often be useful to split the

whole atmosphere into at least an upper and a lower region. The surface sep-

arating them, which might be either horizontal or parallel to the undulating

ground, should be high enough to ensure that no flow occurs in the direc-

tion opposite to the predominant one. Then, the original partially parabolic
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method can be used for the upper region; and any embedded elliptic vol-

umes are contained within the lower one.

Of course, the two regions must exchange information, between itera-

tions, regarding the pressures above and below the boundary and the fluxes

of mass and of horizontal-direction momentum across it; and, as far as the

upper region is concerned, this might as well be cast in wall-function form.

There is no need to go further; but far-seeing researchers might perceive

that, once very many such situations have been analyzed, it may be possible

to recognize quantitative connections between the aforesaid fluxes and some

averaged properties of the below-dividing-surface contents. Thus, the effec-

tive shear-stress coefficient might be expected to depend on the amount of

solid material, its surface area, and the typical solid-element size. One day

indeed, a large-scale research program might be instituted of which the final

deliverable would be a comprehensive set of properly parameterized formu-

las for the “effective roughness” of forests and cities. These could be used by

practicing engineers, town planners, and environmentalists who had not

time themselves to make massive CFD calculations.

Alas, no such pragmatic research programs are visible on the current sci-

entific scene; but, when funding agencies are more wisely directed, theymay

appear in the future.

5. CONCLUDING REMARKS

The earlier-mentioned miscellany of fact and speculation, of history
and prophesy, of argument and opinion, and of “broad-brush” and

“nitty–gritty” has been launched with the motives expressed in the abstract.

Readers who reach the end, will now look onCFD/CHT, it is hoped, as less

daunting and awesome than they thought; and also as less finished. If some of

them are caused to think “I believe that I could do better than that, the

author will be well pleased.”
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